TASK inhibition by mild acidosis increases Ca2+ oscillations to mediate pH sensing in rat carotid body chemoreceptor cells. 2023

Donghee Kim, and James O Hogan, and Carl White
Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States.

Severe levels of acidosis (pH < 6.8) have been shown to cause a sustained rise in cytosolic Ca2+ concentration in carotid body Type 1 (glomus) cells. To understand how physiologically relevant levels of acidosis regulate Ca2+ signaling in glomus cells, we studied the effects of small changes in extracellular pH (pHo) on the kinetics of Ca2+ oscillations. A decrease in pHo from 7.4 to 7.3 (designated mild) and 7.2 (designated moderate) acidosis produced significant increases in the frequency and amplitude of Ca2+ oscillations. These effects of acidosis on Ca2+ oscillations were not blocked by NS383 and amiloride [acid-sensing ion channel (ASIC) inhibitors]. Mild and moderate levels of acidosis, however, caused a small but significant inhibition of two-pore domain acid-sensing K+ channels (TASK) (TASK-1- and TASK-3-like channels) and depolarized the cell by 6-13 mV. Acidosis-induced increase in Ca2+ oscillations was inhibited by nifedipine (1 µM; L-type Cav inhibitor) and by TTA-P2 (20 µM; T-type Cav inhibitor). Mild inhibition of TASK activity by N-[(2,4-difluorophenyl)methyl]-2'-[[[2-(4methoxyphenyl)acetyl]amino]methyl][1,1'-biphenyl]-2-carboxamide (A1899) (0.3 µM) and 1-[1-[6-[[1,1'-biphenyl]-4-ylcarbonyl)-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine-4-yl]-4-piperidinyl]-1-butanon (PK-THPP) (0.1 µM) increased Ca2+ oscillation frequency to levels similar to those observed with mild-moderate acidosis. Mild acidosis (pHo 7.3) and mild hypoxia (∼5%O2) produced similar levels of changes in the kinetics of Ca2+ oscillations. Block of tetraethylammonium (TEA)-sensitive Kv channels did not affect acid-induced increase in Ca2+ oscillations. Our study shows that mild and moderate levels of acidosis increase the frequency and amplitude of Ca2+ oscillations primarily by inhibition of TASK without involving ASICs, and suggests a major role of TASK for signal transduction in response to a physiological change in pHo.

UI MeSH Term Description Entries
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002344 Carotid Body A small cluster of chemoreceptive and supporting cells located near the bifurcation of the internal carotid artery. The carotid body, which is richly supplied with fenestrated capillaries, senses the pH, carbon dioxide, and oxygen concentrations in the blood and plays a crucial role in their homeostatic control. Glomus Caroticum,Bodies, Carotid,Body, Carotid,Caroticum, Glomus,Carotid Bodies
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000138 Acidosis A pathologic condition of acid accumulation or depletion of base in the body. The two main types are RESPIRATORY ACIDOSIS and metabolic acidosis, due to metabolic acid build up. Metabolic Acidosis,Acidoses,Acidoses, Metabolic,Acidosis, Metabolic,Metabolic Acidoses
D000143 Acids Chemical compounds which yield hydrogen ions or protons when dissolved in water, whose hydrogen can be replaced by metals or basic radicals, or which react with bases to form salts and water (neutralization). An extension of the term includes substances dissolved in media other than water. (Grant & Hackh's Chemical Dictionary, 5th ed) Acid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Donghee Kim, and James O Hogan, and Carl White
April 1994, The Journal of physiology,
Donghee Kim, and James O Hogan, and Carl White
April 2010, Brain research,
Donghee Kim, and James O Hogan, and Carl White
January 2004, Journal of pineal research,
Donghee Kim, and James O Hogan, and Carl White
January 2004, Methods in enzymology,
Donghee Kim, and James O Hogan, and Carl White
December 1995, The Journal of physiology,
Donghee Kim, and James O Hogan, and Carl White
November 2007, Circulation research,
Donghee Kim, and James O Hogan, and Carl White
January 1996, Advances in experimental medicine and biology,
Donghee Kim, and James O Hogan, and Carl White
August 2001, The Journal of physiology,
Donghee Kim, and James O Hogan, and Carl White
July 2000, Brain research,
Donghee Kim, and James O Hogan, and Carl White
November 2001, The Journal of physiology,
Copied contents to your clipboard!