Control of thymidine kinase mRNA during the cell cycle. 1987

D L Coppock, and A B Pardee
Department of Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.

To investigate the mechanism which controls the onset of DNA synthesis, we examined the regulation of thymidine kinase (TK) and its mRNA in the cell cycle. TK activity provides a useful marker for the onset of the S phase in mammalian cells. The present analysis of regulation of TK mRNA in BALB/c 3T3 cells showed that (i) the increase in TK activity depended on the availability of TK mRNA, (ii) the level of TK mRNA between G0 and S increased more than 20-fold, (iii) the rate of run-on TK transcription increased at most 2- to 4-fold between the G0 and S phases, (iv) the half-life of TK mRNA was greater than 8 to 12 h in the S and M phases and decreased as cells entered quiescence, (v) the TK mRNA increase was fully blocked by inhibition of protein synthesis by only 60%, (vi) this inhibition was completely effective for up to about 10 h following serum addition and progressively much less effective when the drugs were added later. These results suggest that the appearance of TK mRNA at the beginning of the S phase in serum-stimulated 3T3 cells is controlled not only by the rate of gene transcription but importantly also by the decreased rate of mRNA degradation. Similar mechanisms may be involved in regulation of the onset of DNA synthesis and the increase in TK mRNA since both are controlled in a manner consistent with a requirement for a labile protein.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013937 Thymidine Kinase An enzyme that catalyzes the conversion of ATP and thymidine to ADP and thymidine 5'-phosphate. Deoxyuridine can also act as an acceptor and dGTP as a donor. (From Enzyme Nomenclature, 1992) EC 2.7.1.21. Deoxythymidine Kinase,Deoxypyrimidine Kinase,Kinase, Deoxypyrimidine,Kinase, Deoxythymidine,Kinase, Thymidine
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

D L Coppock, and A B Pardee
January 1996, The Journal of biological chemistry,
D L Coppock, and A B Pardee
October 1990, Molecular and cellular biology,
D L Coppock, and A B Pardee
June 1988, The Journal of biological chemistry,
D L Coppock, and A B Pardee
January 1992, Advances in enzyme regulation,
D L Coppock, and A B Pardee
January 1996, Progress in nucleic acid research and molecular biology,
D L Coppock, and A B Pardee
October 1977, Cell,
Copied contents to your clipboard!