Rapid transneuronal destruction following peripheral nerve transection in the medullary dorsal horn is enhanced by strychnine, picrotoxin and bicuculline. 1987

Tomosada Sugimoto, and Motohide Takemura, and Akira Sakai, and Masashi Ishimaru
Second Department of Oral Anatomy, Osaka University Faculty of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565 Japan Research Resource Center, Osaka University Faculty of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565 Japan.

The effects of systemic administration of strychnine (1 mg/kg), picrotoxin (0.5 mg/kg) and bicuculline (2 mg/kg) on acute transsynaptic destruction of medullary dorsal horn neurons following transection of the inferior alveolar nerve were assessed in rats. Single intraperitoneal injections of the above drugs were given without, 1 min before or 1 min after the nerve transection. The effect of transection without drug administration was also examined. Eighteen hours after nerve transection without drug, approximately 7 dark neurons were found in a single toluidine blue stained 1 micron section of the rostral medullary dorsal horn ipsilateral to the nerve transection. Administration of the drugs 1 min before the nerve transection significantly increased the number of dark neurons in a single section to about 17 (strychnine), 46 (picrotoxin) and 20 (bicuculline). These dark neurons were found mainly in the dorsal half of medullary dorsal horn. Delivery of any of the drugs 1 min after the nerve transection did not increase the number of dark neurons. The data thus indicate that the transneuronal effect of transection of the nerve was enhanced by antagonism of glycinergic and GABAergic inhibition of dorsal horn neurons. In view of the short latency and duration of transsynaptic destructive activity, a massive injury discharge of primary afferent neurons and the subsequent release of excitatory neurotransmitters appear to be the direct cause of convulsant-enhanced rapid transsynaptic destruction which follows the peripheral nerve transection.

UI MeSH Term Description Entries
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D010852 Picrotoxin A mixture of PICROTOXININ and PICROTIN that is a noncompetitive antagonist at GABA-A receptors acting as a convulsant. Picrotoxin blocks the GAMMA-AMINOBUTYRIC ACID-activated chloride ionophore. Although it is most often used as a research tool, it has been used as a CNS stimulant and an antidote in poisoning by CNS depressants, especially the barbiturates. 3,6-Methano-8H-1,5,7-trioxacyclopenta(ij)cycloprop(a)azulene-4,8(3H)-dione, hexahydro-2a-hydroxy-9-(1-hydroxy-1-methylethyl)-8b-methyl-, (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8aS*,8bbeta,9S*))-, compd. with (1aR-(1aalpha,2abeta,3beta,6beta,6abeta,8,Cocculin
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001640 Bicuculline An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors. 6-(5,6,7,8-Tetrahydro-6-methyl-1,3-dioxolo(4,5-g)isoquinolin-5-yl)furo(3,4-e)1,3-benzodioxol-8(6H)one
D013331 Strychnine An alkaloid found in the seeds of STRYCHNOS NUX-VOMICA. It is a competitive antagonist at glycine receptors and thus a convulsant. It has been used as an analeptic, in the treatment of nonketotic hyperglycinemia and sleep apnea, and as a rat poison. Strychnine Nitrate,Nitrate, Strychnine
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D059348 Peripheral Nerve Injuries Injuries to the PERIPHERAL NERVES. Peripheral Nerve Injury,Nerve Injuries, Peripheral,Nerve Injury, Peripheral

Related Publications

Tomosada Sugimoto, and Motohide Takemura, and Akira Sakai, and Masashi Ishimaru
November 1984, Brain research,
Tomosada Sugimoto, and Motohide Takemura, and Akira Sakai, and Masashi Ishimaru
December 2001, Journal of neurophysiology,
Tomosada Sugimoto, and Motohide Takemura, and Akira Sakai, and Masashi Ishimaru
September 2004, Brain research,
Tomosada Sugimoto, and Motohide Takemura, and Akira Sakai, and Masashi Ishimaru
June 1991, Brain research,
Tomosada Sugimoto, and Motohide Takemura, and Akira Sakai, and Masashi Ishimaru
January 1977, Journal of neuroscience research,
Tomosada Sugimoto, and Motohide Takemura, and Akira Sakai, and Masashi Ishimaru
April 2015, Cellular and molecular neurobiology,
Tomosada Sugimoto, and Motohide Takemura, and Akira Sakai, and Masashi Ishimaru
August 2002, Neuropeptides,
Tomosada Sugimoto, and Motohide Takemura, and Akira Sakai, and Masashi Ishimaru
March 1989, Neuroscience letters,
Tomosada Sugimoto, and Motohide Takemura, and Akira Sakai, and Masashi Ishimaru
January 2000, Polish journal of pharmacology,
Copied contents to your clipboard!