Microbiota from Exercise Mice Counteracts High-Fat High-Cholesterol Diet-Induced Cognitive Impairment in C57BL/6 Mice. 2023

Rui Li, and Ruitong Liu, and Lei Chen, and Guiping Wang, and Liqiang Qin, and Zengli Yu, and Zhongxiao Wan
Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.

Gut microbes may be the critical mediators for the cognitive enhancing effects of exercise. Via fecal microbiota transplantation (FMT), this study is aimed at determining the mechanism of how voluntary exercise improved learning and memory ability impairment post a high-fat, high-cholesterol (HFHC) diet. The learning and memory abilities assessed via the Morris water maze in the FMT recipient group of voluntary exercising mice were improved compared to sedentary group. 16S rRNA gene sequencing results indicated that exercise-induced changes in gut microbiota distribution were transmissible, mainly in terms of elevated Lactobacillus, Lactobacillus, and Eubacterium nodatum, as well as decreased Clostrida_UCG-014 and Akkermansia after FMT. The neuroprotective effects of FMT were mainly related to the improved insulin signaling pathway (IRS2/PI3K/AKT) and mitochondrial function; inhibition of AQP4; decreased p-Tau at serine 396 and 404; increased BDNF, PSD95, and synaptophysin in the hippocampus; and also decreased HDAC2 and HDAC3 protein expressions in the nuclear and cytoplasmic fractions of the hippocampus. The findings of qRT-PCR suggested that exercise-induced gut microbes, on the one hand, elevated GPR109A and decreased GPR43 and TNF-α in the hippocampus. On the other hand, it increased GPR109A and GPR41 expressions in the proximal colon tissue. In addition, total short-chain fatty acid (SCFA), acetic acid, propionic acid, isobutyric acid, valeric acid, and isovaleric acid contents were also elevated in the cecum. In conclusion, exercise-induced alterations in gut microbiota play a decisive role in ameliorating HFHC diet-induced cognitive deficits. FMT treatment may be a new considerable direction in ameliorating cognitive impairment induced by exposure to HFHC diet.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010805 Physical Conditioning, Animal Diet modification and physical exercise to improve the ability of animals to perform physical activities. Animal Physical Conditioning,Animal Physical Conditionings,Conditioning, Animal Physical,Conditionings, Animal Physical,Physical Conditionings, Animal
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D000069196 Gastrointestinal Microbiome All of the microbial organisms that naturally exist within the GASTROINTESTINAL TRACT. Enteric Bacteria,Gastric Microbiome,Gastrointestinal Flora,Gastrointestinal Microbial Community,Gastrointestinal Microbiota,Gastrointestinal Microflora,Gut Flora,Gut Microbiome,Gut Microbiota,Gut Microflora,Intestinal Flora,Intestinal Microbiome,Intestinal Microbiota,Intestinal Microflora,Bacteria, Enteric,Flora, Gastrointestinal,Flora, Gut,Flora, Intestinal,Gastric Microbiomes,Gastrointestinal Microbial Communities,Gastrointestinal Microbiomes,Gastrointestinal Microbiotas,Gut Microbiomes,Gut Microbiotas,Intestinal Microbiomes,Intestinal Microbiotas,Microbial Community, Gastrointestinal,Microbiome, Gastric,Microbiome, Gastrointestinal,Microbiome, Gut,Microbiome, Intestinal,Microbiota, Gastrointestinal,Microbiota, Gut,Microbiota, Intestinal,Microflora, Gastrointestinal,Microflora, Gut,Microflora, Intestinal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012336 RNA, Ribosomal, 16S Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis. 16S Ribosomal RNA,16S rRNA,RNA, 16S Ribosomal,Ribosomal RNA, 16S,rRNA, 16S
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D059305 Diet, High-Fat Consumption of excessive DIETARY FATS. Diet, High Fat,Diets, High Fat,Diets, High-Fat,High Fat Diet,High Fat Diets,High-Fat Diet,High-Fat Diets
D060825 Cognitive Dysfunction Diminished or impaired mental and/or intellectual function. Cognitive Disorder,Mild Cognitive Impairment,Cognitive Decline,Cognitive Impairments,Mental Deterioration,Cognitive Declines,Cognitive Disorders,Cognitive Dysfunctions,Cognitive Impairment,Cognitive Impairment, Mild,Cognitive Impairments, Mild,Decline, Cognitive,Declines, Cognitive,Deterioration, Mental,Deteriorations, Mental,Disorder, Cognitive,Disorders, Cognitive,Dysfunction, Cognitive,Dysfunctions, Cognitive,Impairment, Cognitive,Impairment, Mild Cognitive,Impairments, Cognitive,Impairments, Mild Cognitive,Mental Deteriorations,Mild Cognitive Impairments
D019869 Phosphatidylinositol 3-Kinases Phosphotransferases that catalyzes the conversion of 1-phosphatidylinositol to 1-phosphatidylinositol 3-phosphate. Many members of this enzyme class are involved in RECEPTOR MEDIATED SIGNAL TRANSDUCTION and regulation of vesicular transport with the cell. Phosphatidylinositol 3-Kinases have been classified both according to their substrate specificity and their mode of action within the cell. PI-3 Kinase,Phosphatidylinositol-3-OH Kinase,PtdIns 3-Kinase,PI 3-Kinase,PI-3K,PI3 Kinases,PI3-Kinase,Phosphoinositide 3 Kinases,Phosphoinositide 3-Hydroxykinase,PtdIns 3-Kinases,3-Hydroxykinase, Phosphoinositide,Kinase, PI-3,Kinase, Phosphatidylinositol-3-OH,Kinases, PI3,Kinases, Phosphoinositide 3,PI 3 Kinase,PI3 Kinase,Phosphatidylinositol 3 Kinases,Phosphatidylinositol 3 OH Kinase,Phosphoinositide 3 Hydroxykinase,PtdIns 3 Kinase,PtdIns 3 Kinases

Related Publications

Rui Li, and Ruitong Liu, and Lei Chen, and Guiping Wang, and Liqiang Qin, and Zengli Yu, and Zhongxiao Wan
April 2019, Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology,
Rui Li, and Ruitong Liu, and Lei Chen, and Guiping Wang, and Liqiang Qin, and Zengli Yu, and Zhongxiao Wan
January 2012, Food & function,
Rui Li, and Ruitong Liu, and Lei Chen, and Guiping Wang, and Liqiang Qin, and Zengli Yu, and Zhongxiao Wan
November 2020, Nutrients,
Rui Li, and Ruitong Liu, and Lei Chen, and Guiping Wang, and Liqiang Qin, and Zengli Yu, and Zhongxiao Wan
November 2015, International journal of biological macromolecules,
Rui Li, and Ruitong Liu, and Lei Chen, and Guiping Wang, and Liqiang Qin, and Zengli Yu, and Zhongxiao Wan
April 2021, Journal of food biochemistry,
Rui Li, and Ruitong Liu, and Lei Chen, and Guiping Wang, and Liqiang Qin, and Zengli Yu, and Zhongxiao Wan
December 2021, Nutrition research and practice,
Rui Li, and Ruitong Liu, and Lei Chen, and Guiping Wang, and Liqiang Qin, and Zengli Yu, and Zhongxiao Wan
July 2020, International journal of environmental research and public health,
Rui Li, and Ruitong Liu, and Lei Chen, and Guiping Wang, and Liqiang Qin, and Zengli Yu, and Zhongxiao Wan
April 2017, Journal of agricultural and food chemistry,
Rui Li, and Ruitong Liu, and Lei Chen, and Guiping Wang, and Liqiang Qin, and Zengli Yu, and Zhongxiao Wan
January 2022, Frontiers in microbiology,
Rui Li, and Ruitong Liu, and Lei Chen, and Guiping Wang, and Liqiang Qin, and Zengli Yu, and Zhongxiao Wan
August 2016, Analytical chemistry,
Copied contents to your clipboard!