The antihypertensive effect of remote ischemic conditioning in spontaneously hypertensive rats. 2022

Xiaohua Li, and Changhong Ren, and Sijie Li, and Wenbo Zhao, and Peifu Wang, and Xunming Ji
Department of Neurology, Aerospace center Hospital, Beijing, China.

Limb remote ischemic conditioning (LRIC) may be an effective method to control hypertension. This study investigated whether LRIC decreases blood pressure by regulating the hypertensive inflammatory response in spontaneously hypertensive rats (SHR). The SHR and aged-matched Wistar rats with different ages were randomly assigned to the SHR group, SHR+LRIC group, Wistar group, and Wistar + LRIC group. LRIC was conducted by tightening a tourniquet around the upper thigh and releasing it for three cycles daily (10 mins x3 cycles). Blood pressure, the percentage of monocytes and T lymphocytes, and the concentration of pro-inflammatory cytokines in the blood were analyzed. The blood pressure of SHR was significantly higher than that of age-matched Wistar rats. LRIC decreased blood pressure in SHR at different ages (4, 8, and 16 weeks old), but had no effect on the blood pressure in Wistar rats. Flow cytometry analysis showed that blood monocytes and CD8 T cells of SHR were higher than those of Wistar rats. LRIC significantly decreased the percentage of monocytes and CD8 T cells in SHR. Consistent with the changes of immune cells, the levels of plasma IL-6 and TNF-α in SHR were also higher. And LRIC attenuated the plasma IL-6 and TNF-α levels in SHR. LRIC may decreased the blood pressure via modulation of the inflammatory response in SHR.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000959 Antihypertensive Agents Drugs used in the treatment of acute or chronic vascular HYPERTENSION regardless of pharmacological mechanism. Among the antihypertensive agents are DIURETICS; (especially DIURETICS, THIAZIDE); ADRENERGIC BETA-ANTAGONISTS; ADRENERGIC ALPHA-ANTAGONISTS; ANGIOTENSIN-CONVERTING ENZYME INHIBITORS; CALCIUM CHANNEL BLOCKERS; GANGLIONIC BLOCKERS; and VASODILATOR AGENTS. Anti-Hypertensive,Anti-Hypertensive Agent,Anti-Hypertensive Drug,Antihypertensive,Antihypertensive Agent,Antihypertensive Drug,Anti-Hypertensive Agents,Anti-Hypertensive Drugs,Anti-Hypertensives,Antihypertensive Drugs,Antihypertensives,Agent, Anti-Hypertensive,Agent, Antihypertensive,Agents, Anti-Hypertensive,Agents, Antihypertensive,Anti Hypertensive,Anti Hypertensive Agent,Anti Hypertensive Agents,Anti Hypertensive Drug,Anti Hypertensive Drugs,Anti Hypertensives,Drug, Anti-Hypertensive,Drug, Antihypertensive,Drugs, Anti-Hypertensive,Drugs, Antihypertensive
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015850 Interleukin-6 A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS. Hepatocyte-Stimulating Factor,Hybridoma Growth Factor,IL-6,MGI-2,Myeloid Differentiation-Inducing Protein,Plasmacytoma Growth Factor,B Cell Stimulatory Factor-2,B-Cell Differentiation Factor,B-Cell Differentiation Factor-2,B-Cell Stimulatory Factor 2,B-Cell Stimulatory Factor-2,BSF-2,Differentiation Factor, B-Cell,Differentiation Factor-2, B-Cell,IFN-beta 2,IL6,Interferon beta-2,B Cell Differentiation Factor,B Cell Differentiation Factor 2,B Cell Stimulatory Factor 2,Differentiation Factor 2, B Cell,Differentiation Factor, B Cell,Differentiation-Inducing Protein, Myeloid,Growth Factor, Hybridoma,Growth Factor, Plasmacytoma,Hepatocyte Stimulating Factor,Interferon beta 2,Interleukin 6,Myeloid Differentiation Inducing Protein,beta-2, Interferon
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Xiaohua Li, and Changhong Ren, and Sijie Li, and Wenbo Zhao, and Peifu Wang, and Xunming Ji
June 1989, Hypertension (Dallas, Tex. : 1979),
Xiaohua Li, and Changhong Ren, and Sijie Li, and Wenbo Zhao, and Peifu Wang, and Xunming Ji
August 1978, Japanese journal of pharmacology,
Xiaohua Li, and Changhong Ren, and Sijie Li, and Wenbo Zhao, and Peifu Wang, and Xunming Ji
October 1976, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Xiaohua Li, and Changhong Ren, and Sijie Li, and Wenbo Zhao, and Peifu Wang, and Xunming Ji
April 1978, Archivos de farmacologia y toxicologia,
Xiaohua Li, and Changhong Ren, and Sijie Li, and Wenbo Zhao, and Peifu Wang, and Xunming Ji
January 2014, Evidence-based complementary and alternative medicine : eCAM,
Xiaohua Li, and Changhong Ren, and Sijie Li, and Wenbo Zhao, and Peifu Wang, and Xunming Ji
January 2008, Journal of oleo science,
Xiaohua Li, and Changhong Ren, and Sijie Li, and Wenbo Zhao, and Peifu Wang, and Xunming Ji
August 1985, The Journal of laboratory and clinical medicine,
Xiaohua Li, and Changhong Ren, and Sijie Li, and Wenbo Zhao, and Peifu Wang, and Xunming Ji
April 2008, The British journal of nutrition,
Xiaohua Li, and Changhong Ren, and Sijie Li, and Wenbo Zhao, and Peifu Wang, and Xunming Ji
February 1992, Hypertension (Dallas, Tex. : 1979),
Xiaohua Li, and Changhong Ren, and Sijie Li, and Wenbo Zhao, and Peifu Wang, and Xunming Ji
August 2005, Journal of ethnopharmacology,
Copied contents to your clipboard!