Placental macrophages present distinct polarization pattern and effector functions depending on clinical onset of preeclampsia. 2022

Monika Horvat Mercnik, and Carolin Schliefsteiner, and Herbert Fluhr, and Christian Wadsack
Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.

Hofbauer cells (HBCs) are resident macrophages of the human placenta, regulating immune tolerance and tissue homeostasis. HBCs of a normal placenta (CTR) exhibit mainly an anti-inflammatory M2 phenotype. Under exaggerated chronic inflammation during pregnancy, as in preeclampsia (PE), a phenotypic switch towards M1 polarization has been proposed. PE, defined as maternally derived syndrome can be distinguished into two different entities: early-onset (EO) preeclampsia and late-onset (LO) preeclampsia. Although the clinical presenting characteristics overlap, both can be identified by biochemical markers, heritability, and different maternal and fetal outcomes. To date, no study has specifically investigated polarization and phenotype of EO- and LO-PE HBCs and looked at possible changes in HBC functionality. Primary HBCs were isolated from CTR and PE placentae. First, in vitro morphological differences were observed between CTR and PE HBCs, with both PE groups exhibiting features of M1 macrophages alongside M2 forms. Interestingly, a different polarization pattern was observed between EO- and LO-PE HBCs. EO-PE HBCs develop a tissue remodeling M2 phenotype that is strongly shifted toward M1 polarization and showed a significant upregulation of CD86, TLR4, and HLA-DR. Furthermore, this pro-inflammatory signature is corroborated by higher expression of IRF5 and of NOS2 (p ≤ 0.05). However, their M2 characteristics is reflected by significant TGF-β secretion and ARG1 expression. In contrast, LO-PE HBCs developed a phagocytic CD209-low M2 phenotype in which the M1 pattern was not as pronounced as they downregulated the NOS2 gene, but expressed increased levels of pro-inflammatory CD80 and TLR1 (p ≤ 0.05). The enhanced phagocytosis and MMP-9 secretion alongside the increased secretion of anti-inflammatory IL -4, IL -13 and TGF-β in both EO- and LO-PE HBCs suggests their adaptive role and plasticity in resolving inflammation and tissue homeostasis.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011225 Pre-Eclampsia A complication of PREGNANCY, characterized by a complex of symptoms including maternal HYPERTENSION and PROTEINURIA with or without pathological EDEMA. Symptoms may range between mild and severe. Pre-eclampsia usually occurs after the 20th week of gestation, but may develop before this time in the presence of trophoblastic disease. Toxemias, Pregnancy,EPH Complex,EPH Gestosis,EPH Toxemias,Edema-Proteinuria-Hypertension Gestosis,Gestosis, EPH,Hypertension-Edema-Proteinuria Gestosis,Preeclampsia,Preeclampsia Eclampsia 1,Pregnancy Toxemias,Proteinuria-Edema-Hypertension Gestosis,Toxemia Of Pregnancy,1, Preeclampsia Eclampsia,1s, Preeclampsia Eclampsia,EPH Toxemia,Eclampsia 1, Preeclampsia,Eclampsia 1s, Preeclampsia,Edema Proteinuria Hypertension Gestosis,Gestosis, Edema-Proteinuria-Hypertension,Gestosis, Hypertension-Edema-Proteinuria,Gestosis, Proteinuria-Edema-Hypertension,Hypertension Edema Proteinuria Gestosis,Of Pregnancies, Toxemia,Of Pregnancy, Toxemia,Pre Eclampsia,Preeclampsia Eclampsia 1s,Pregnancies, Toxemia Of,Pregnancy Toxemia,Pregnancy, Toxemia Of,Proteinuria Edema Hypertension Gestosis,Toxemia Of Pregnancies,Toxemia, EPH,Toxemia, Pregnancy,Toxemias, EPH
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk

Related Publications

Monika Horvat Mercnik, and Carolin Schliefsteiner, and Herbert Fluhr, and Christian Wadsack
January 2021, Theranostics,
Monika Horvat Mercnik, and Carolin Schliefsteiner, and Herbert Fluhr, and Christian Wadsack
January 1987, Acta medica Scandinavica. Supplementum,
Monika Horvat Mercnik, and Carolin Schliefsteiner, and Herbert Fluhr, and Christian Wadsack
February 1999, Cell and tissue research,
Monika Horvat Mercnik, and Carolin Schliefsteiner, and Herbert Fluhr, and Christian Wadsack
August 1993, Current opinion in immunology,
Monika Horvat Mercnik, and Carolin Schliefsteiner, and Herbert Fluhr, and Christian Wadsack
June 1979, Transplantation proceedings,
Monika Horvat Mercnik, and Carolin Schliefsteiner, and Herbert Fluhr, and Christian Wadsack
January 2018, Placenta,
Monika Horvat Mercnik, and Carolin Schliefsteiner, and Herbert Fluhr, and Christian Wadsack
January 2016, The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians,
Monika Horvat Mercnik, and Carolin Schliefsteiner, and Herbert Fluhr, and Christian Wadsack
January 2019, Pediatric and developmental pathology : the official journal of the Society for Pediatric Pathology and the Paediatric Pathology Society,
Monika Horvat Mercnik, and Carolin Schliefsteiner, and Herbert Fluhr, and Christian Wadsack
January 2020, Basic research in cardiology,
Monika Horvat Mercnik, and Carolin Schliefsteiner, and Herbert Fluhr, and Christian Wadsack
January 2022, Frontiers in physiology,
Copied contents to your clipboard!