Effect of tea catechins on gut microbiota in high fat diet-induced obese mice. 2023

Jianhui Liu, and Huafang Ding, and Chi Yan, and Zouyan He, and Hanyue Zhu, and Ka Ying Ma
College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China.

BACKGROUND Tea catechins have been shown to have beneficial effects on the alleviation of obesity, the prevention of diabetes, and the amelioration of metabolic syndrome. The purpose of the present work is to explore the underlying mechanisms linking the intestinal microbiota and anti-obesity benefits of green tea, oolong tea, and black tea catechins in C57BL/6J mice fed with a high-fat diet (HFD). RESULTS The results indicated that, after the dietary intake of three tea catechins, obesity and low-grade inflammation were significantly alleviated. Hepatic steatosis was prevented, and this was accompanied by the upregulation of the mRNA and protein expressions of hepatic peroxisome proliferator-activated receptor α (PPARα). Metagenomic analysis of fecal samples suggested that the three tea catechins similarly changed the microbiota in terms of overall structure, composition, and protein functions by regulating the metabolites, facilitating the generation of short-chain fatty acids (SCFAs), and repressing lipopolysaccharides. CONCLUSIONS The anti-obese properties of three tea catechins were partially mediated by their positive effect on gut microbiota, hepatic steatosis alleviation, and anti-inflammatory activity. © 2023 Society of Chemical Industry.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008820 Mice, Obese Mutant mice exhibiting a marked obesity coupled with overeating, hyperglycemia, hyperinsulinemia, marked insulin resistance, and infertility when in a homozygous state. They may be inbred or hybrid. Hyperglycemic Mice,Obese Mice,Mouse, Hyperglycemic,Mouse, Obese,Hyperglycemic Mouse,Mice, Hyperglycemic,Obese Mouse
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D002392 Catechin An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Catechinic Acid,Catechuic Acid,(+)-Catechin,(+)-Cyanidanol,(+)-Cyanidanol-3,(-)-Epicatechin,(2R,3R)-2-(3,4-Dihydroxyphenyl)-3,5,7-chromanetriol,2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2R-cis)-,3,3',4',5,7-Flavanpentol,Catergen,Cianidanol,Cyanidanol-3,Epicatechin,KB-53,Z 7300,Zyma,Cyanidanol 3,KB 53,KB53
D000069196 Gastrointestinal Microbiome All of the microbial organisms that naturally exist within the GASTROINTESTINAL TRACT. Enteric Bacteria,Gastric Microbiome,Gastrointestinal Flora,Gastrointestinal Microbial Community,Gastrointestinal Microbiota,Gastrointestinal Microflora,Gut Flora,Gut Microbiome,Gut Microbiota,Gut Microflora,Intestinal Flora,Intestinal Microbiome,Intestinal Microbiota,Intestinal Microflora,Bacteria, Enteric,Flora, Gastrointestinal,Flora, Gut,Flora, Intestinal,Gastric Microbiomes,Gastrointestinal Microbial Communities,Gastrointestinal Microbiomes,Gastrointestinal Microbiotas,Gut Microbiomes,Gut Microbiotas,Intestinal Microbiomes,Intestinal Microbiotas,Microbial Community, Gastrointestinal,Microbiome, Gastric,Microbiome, Gastrointestinal,Microbiome, Gut,Microbiome, Intestinal,Microbiota, Gastrointestinal,Microbiota, Gut,Microbiota, Intestinal,Microflora, Gastrointestinal,Microflora, Gut,Microflora, Intestinal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013662 Tea The infusion of leaves of CAMELLIA SINENSIS (formerly Thea sinensis) as a beverage, the familiar Asian tea, which contains CATECHIN (especially epigallocatechin gallate) and CAFFEINE. Black Tea,Green Tea,Black Teas,Green Teas,Tea, Black,Tea, Green,Teas, Black,Teas, Green
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D059305 Diet, High-Fat Consumption of excessive DIETARY FATS. Diet, High Fat,Diets, High Fat,Diets, High-Fat,High Fat Diet,High Fat Diets,High-Fat Diet,High-Fat Diets

Related Publications

Jianhui Liu, and Huafang Ding, and Chi Yan, and Zouyan He, and Hanyue Zhu, and Ka Ying Ma
December 2016, Food & function,
Jianhui Liu, and Huafang Ding, and Chi Yan, and Zouyan He, and Hanyue Zhu, and Ka Ying Ma
April 2021, Journal of food biochemistry,
Jianhui Liu, and Huafang Ding, and Chi Yan, and Zouyan He, and Hanyue Zhu, and Ka Ying Ma
January 2019, Diabetes, metabolic syndrome and obesity : targets and therapy,
Jianhui Liu, and Huafang Ding, and Chi Yan, and Zouyan He, and Hanyue Zhu, and Ka Ying Ma
January 2022, Food & function,
Jianhui Liu, and Huafang Ding, and Chi Yan, and Zouyan He, and Hanyue Zhu, and Ka Ying Ma
December 2019, Nutrients,
Jianhui Liu, and Huafang Ding, and Chi Yan, and Zouyan He, and Hanyue Zhu, and Ka Ying Ma
January 2021, Evidence-based complementary and alternative medicine : eCAM,
Jianhui Liu, and Huafang Ding, and Chi Yan, and Zouyan He, and Hanyue Zhu, and Ka Ying Ma
April 2020, Food research international (Ottawa, Ont.),
Jianhui Liu, and Huafang Ding, and Chi Yan, and Zouyan He, and Hanyue Zhu, and Ka Ying Ma
July 2022, Food science & nutrition,
Jianhui Liu, and Huafang Ding, and Chi Yan, and Zouyan He, and Hanyue Zhu, and Ka Ying Ma
May 2024, International journal of molecular sciences,
Jianhui Liu, and Huafang Ding, and Chi Yan, and Zouyan He, and Hanyue Zhu, and Ka Ying Ma
January 2023, Food & function,
Copied contents to your clipboard!