Functions and interaction of plant lipid signalling under abiotic stresses. 2023

Y Liang, and Y Huang, and C Liu, and K Chen, and M Li
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, College of Life Science, Guilin, China.

Lipids are the primary form of energy storage and a major component of plasma membranes, which form the interface between the cell and the extracellular environment. Several lipids - including phosphoinositide, phosphatidic acid, sphingolipids, lysophospholipids, oxylipins, and free fatty acids - also serve as substrates for the generation of signalling molecules. Abiotic stresses, such as drought and temperature stress, are known to affect plant growth. In addition, abiotic stresses can activate certain lipid-dependent signalling pathways that control the expression of stress-responsive genes and contribute to plant stress adaptation. Many studies have focused either on the enzymatic production and metabolism of lipids, or on the mechanisms of abiotic stress response. However, there is little information regarding the roles of plant lipids in plant responses to abiotic stress. In this review, we describe the metabolism of plant lipids and discuss their involvement in plant responses to abiotic stress. As such, this review provides crucial background for further research on the interactions between plant lipids and abiotic stress.

UI MeSH Term Description Entries
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D054883 Oxylipins Eighteen-carbon cyclopentyl polyunsaturated fatty acids derived from ALPHA-LINOLENIC ACID via an oxidative pathway analogous to the EICOSANOIDS in animals. Biosynthesis is inhibited by SALICYLATES. A key member, jasmonic acid of PLANTS, plays a similar role to ARACHIDONIC ACID in animals. Oxylipin
D018506 Gene Expression Regulation, Plant Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants. Plant Gene Expression Regulation,Regulation of Gene Expression, Plant,Regulation, Gene Expression, Plant

Related Publications

Y Liang, and Y Huang, and C Liu, and K Chen, and M Li
January 2023, Frontiers in plant science,
Y Liang, and Y Huang, and C Liu, and K Chen, and M Li
November 2022, Nanomaterials (Basel, Switzerland),
Y Liang, and Y Huang, and C Liu, and K Chen, and M Li
May 2016, Plant, cell & environment,
Y Liang, and Y Huang, and C Liu, and K Chen, and M Li
March 2011, Biochemistry. Biokhimiia,
Y Liang, and Y Huang, and C Liu, and K Chen, and M Li
March 2024, Life (Basel, Switzerland),
Y Liang, and Y Huang, and C Liu, and K Chen, and M Li
July 2021, Planta,
Y Liang, and Y Huang, and C Liu, and K Chen, and M Li
March 2021, Plant biotechnology (Tokyo, Japan),
Y Liang, and Y Huang, and C Liu, and K Chen, and M Li
January 2023, Ecotoxicology and environmental safety,
Y Liang, and Y Huang, and C Liu, and K Chen, and M Li
December 2012, Applied microbiology and biotechnology,
Y Liang, and Y Huang, and C Liu, and K Chen, and M Li
November 2019, Plants (Basel, Switzerland),
Copied contents to your clipboard!