Effects of various pretreatments on the acute nephrotoxic potential of styrene in Fischer-344 rats. 1987

S K Chakrabarti, and B Tuchweber
Médecine du Travail et Hygiène du Milieu, Faculté de Médecine, Université de Montréal, Québec, Canada.

The effects of various inducers and inhibitors of hepatic microsomal mixed-function oxidase (MFO) system and diethylmaleate treatment on styrene-induced acute nephrotoxicity in male Fischer-344 rats were studied. Groups of rats were pretreated with either 3-methylcholanthrene (15 mg/kg, i.p., 3 days), or phenobarbital (80 mg/kg, i.p., 3 days), or SKF525-A (50 mg/kg, i.p., 1 h), or piperonyl butoxide (300 mg/kg, i.p., 2 h), or diethylmaleate (400 mg/kg, i.p., 90 min) prior to an i.p. administration of styrene (0, 0.6 and 0.9 g/kg) in corn oil. The uptake of p-aminohippurate (PAH) by renal cortical slices, the morphology of renal cortices, as well as urinary excretion of N-acetyl-beta-D-glucosaminidase (NAG) and gamma-glutamyl transpeptidase (gamma-GT) of control and pretreated rats were examined 24 h after styrene. The inducers and inhibitors of MFO system failed to modify further the acute nephrotoxicity of styrene. On the other hand, diethylmaleate pretreatment not only reduced further the uptake of PAH, but also produced further significant increase in the urinary excretion of NAG and gamma-GT observed at the higher dose of styrene. Similarly, ultrastructural studies showed a moderate increase in the severity of kidney damage induced at the higher dose of styrene due to pretreatment with diethylmaleate. These data suggest that tissue glutathione concentrations and hence, corresponding conjugating activity might be important determinants of styrene nephrotoxicity. The results further indicate that a metabolic activation system not involving certain cytochrome P-450 might be responsible in styrene-induced nephrotoxicity.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008298 Maleates Derivatives of maleic acid (the structural formula (COO-)-C
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S K Chakrabarti, and B Tuchweber
March 2024, Environmental and molecular mutagenesis,
S K Chakrabarti, and B Tuchweber
January 1988, Journal of toxicology and environmental health,
S K Chakrabarti, and B Tuchweber
July 1981, Journal of the National Cancer Institute,
S K Chakrabarti, and B Tuchweber
January 1986, Journal of toxicology and environmental health,
S K Chakrabarti, and B Tuchweber
September 1983, Toxicology letters,
S K Chakrabarti, and B Tuchweber
April 1997, Xenobiotica; the fate of foreign compounds in biological systems,
S K Chakrabarti, and B Tuchweber
May 1982, The Journal of pharmacology and experimental therapeutics,
S K Chakrabarti, and B Tuchweber
March 1992, Epidemiology (Cambridge, Mass.),
Copied contents to your clipboard!