| D005805 |
Genes, MHC Class I |
Genetic loci in the vertebrate major histocompatibility complex which encode polymorphic characteristics not related to immune responsiveness or complement activity, e.g., B loci (chicken), DLA (dog), GPLA (guinea pig), H-2 (mouse), RT-1 (rat), HLA-A, -B, and -C class I genes of man. |
Class I Genes,Genes, Class I,Genes, H-2 Class I,Genes, HLA Class I,MHC Class I Genes,H-2 Class I Genes,HLA Class I Genes,Class I Gene,Gene, Class I,Genes, H 2 Class I,H 2 Class I Genes |
|
| D006680 |
HLA Antigens |
Antigens determined by leukocyte loci found on chromosome 6, the major histocompatibility loci in humans. They are polypeptides or glycoproteins found on most nucleated cells and platelets, determine tissue types for transplantation, and are associated with certain diseases. |
Human Leukocyte Antigen,Human Leukocyte Antigens,Leukocyte Antigens,HL-A Antigens,Antigen, Human Leukocyte,Antigens, HL-A,Antigens, HLA,Antigens, Human Leukocyte,Antigens, Leukocyte,HL A Antigens,Leukocyte Antigen, Human,Leukocyte Antigens, Human |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000483 |
Alleles |
Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. |
Allelomorphs,Allele,Allelomorph |
|
| D015236 |
HLA-C Antigens |
Class I human histocompatibility (HLA) antigens encoded by a small cluster of structural genes at the C locus on chromosome 6. They have significantly lower immunogenicity than the HLA-A and -B determinants and are therefore of minor importance in donor/recipient crossmatching. Their primary role is their high-risk association with certain disease manifestations (e.g., spondylarthritis, psoriasis, multiple myeloma). |
Antigens, HLA-C,HLA-C,Antigens, HLA C,HLA C Antigens |
|
| D059014 |
High-Throughput Nucleotide Sequencing |
Techniques of nucleotide sequence analysis that increase the range, complexity, sensitivity, and accuracy of results by greatly increasing the scale of operations and thus the number of nucleotides, and the number of copies of each nucleotide sequenced. The sequencing may be done by analysis of the synthesis or ligation products, hybridization to preexisting sequences, etc. |
High-Throughput Sequencing,Illumina Sequencing,Ion Proton Sequencing,Ion Torrent Sequencing,Next-Generation Sequencing,Deep Sequencing,High-Throughput DNA Sequencing,High-Throughput RNA Sequencing,Massively-Parallel Sequencing,Pyrosequencing,DNA Sequencing, High-Throughput,High Throughput DNA Sequencing,High Throughput Nucleotide Sequencing,High Throughput RNA Sequencing,High Throughput Sequencing,Massively Parallel Sequencing,Next Generation Sequencing,Nucleotide Sequencing, High-Throughput,RNA Sequencing, High-Throughput,Sequencing, Deep,Sequencing, High-Throughput,Sequencing, High-Throughput DNA,Sequencing, High-Throughput Nucleotide,Sequencing, High-Throughput RNA,Sequencing, Illumina,Sequencing, Ion Proton,Sequencing, Ion Torrent,Sequencing, Massively-Parallel,Sequencing, Next-Generation |
|