Intramolecular coupling of active sites in the pyruvate dehydrogenase multienzyme complex of Escherichia coli. 1978

M J Danson, and E A Hooper, and R N Perham

The intramolecular passage of substrate between the component enzymes of the pyruvate dehydrogenase multienzyme complex of Escherichia coli was examined. A series of partly reassembled complexes, varying only in their E1 (pyruvate decarboxylase, EC 1.2.4.1) content, was incubated with pyruvate in the absence of CoA, conditions under which the lipoic acid residues covalently bound to the E2 (lipoate acetyltransferase, EC2.3.1.12) chains of the complex become reductively acetylated, and the reaction then ceases. The fraction of E2 chains thus acetylated was estimated by specific reaction of the thiol groups in the acetyl-lipoic acid moieties with N-ethyl[2,3-14C]maleimide. The simplest interpretation of the results was that a single E1 dimer is capable of catalysing the rapid acetylation of 8-12 E2 chains, in good agreement with the results of Bates, Danson, Hale, Hooper & Perham [(1977) Nature (London) 268, 313-316]. This novel functional connexion of active sites must be brought about by transacetylation reactions between lipoic acid residues of neighbouring E2 chains in the enzyme complex. There was also a slow transacylation process between the rapidly acetylated lipoic acid residues and those that did not react in the initial, faster phase. This interaction was not investigated in detail, since it is too slow to be of kinetic significance in the normal enzymic reaction.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011768 Pyruvate Dehydrogenase Complex A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) Complex, Pyruvate Dehydrogenase,Dehydrogenase Complex, Pyruvate
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005033 Ethylmaleimide A sulfhydryl reagent that is widely used in experimental biochemical studies. N-Ethylmaleimide,N Ethylmaleimide
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

M J Danson, and E A Hooper, and R N Perham
August 1983, The Biochemical journal,
M J Danson, and E A Hooper, and R N Perham
May 1983, Proceedings of the National Academy of Sciences of the United States of America,
M J Danson, and E A Hooper, and R N Perham
November 1978, Proceedings of the National Academy of Sciences of the United States of America,
M J Danson, and E A Hooper, and R N Perham
February 1979, European journal of biochemistry,
M J Danson, and E A Hooper, and R N Perham
November 2010, Archives of microbiology,
M J Danson, and E A Hooper, and R N Perham
April 1979, Biochemistry,
M J Danson, and E A Hooper, and R N Perham
June 1984, The EMBO journal,
M J Danson, and E A Hooper, and R N Perham
January 2008, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!