Physical stability, microstructure and interfacial properties of solid-oil-in-water (S/O/W) emulsions stabilized by sodium caseinate/xanthan gum complexes. 2023
Calcium carbonate (CaCO3) has poor suspension stability, which severely limits its application in food processing and products. In this study, sodium caseinate (NaCas) and sodium caseinate (NaCas)-xanthan gum (XG) mixtures were compared for the stable preparation of solid/oil/water (S/O/W) emulsions for the delivery of calcium carbonate (CaCO3) to solve the problem of poor suspension stability. The physical stability, particle size distribution, and microstructure of S/O/W emulsions were investigated to prove the successful construction of the system. The dynamic surface pressure and surface swelling properties of 2.0 wt% NaCas with different concentrations of XG were investigated to clarify the effect of interfacial properties of NaCas-XG mixtures on the emulsion stability of S/O/W emulsions. The results showed that the addition of XG resulted in enhanced physical stability, reduced particle size distribution, and enhanced encapsulation effect of the emulsion, forming a more three-dimensional core-shell structure via dendritic links. XG had a significant effect on the dynamic properties of the NaCas adsorption membrane: NaCas interacted with XG and the diffusion (kdiff) of NaCas to the interface decreased in short adsorption time, thus limiting the protein adsorption effectiveness; the presence of XG reduced the penetration (kP) and rearrangement (kR) rates at the interface during long adsorption times. Meanwhile, the NaCas-XG mixture has a high swelling elasticity. The results of this study can be used to improve the quality of related emulsion products or to prepare delivery systems for bioactive compounds.