Irigenin attenuates lipopolysaccharide-induced acute lung injury by inactivating the mitogen-activated protein kinase (MAPK) signaling pathway. 2023

Dan Liu, and Qing Wang, and Wen Yuan, and Qiang Wang
Department of Pharmacy, the Second Affiliated Hospital of Army Medical University, Chongqing, China.

Acute lung injury (ALI) is a serious pulmonary inflammation disease with high mortality. Irigenin, an isoflavone from rhizomes of the Belamcanda chinensis, has been reported to exert anti-inflammatory, anti-oxidative, and anti-apoptotic activities in several diseases. However, it is still unclear whether irigenin can exert a beneficial effect in ALI. A network pharmacology method was utilized to predict the hub targets and potential therapeutic mechanisms of irigenin against ALI. Lipopolysaccharide (LPS) was used to establish the mice model of ALI for evaluating the effects of irigenin. According to the protein-protein interaction (PPI) network, we identified EGFR, HRAS, AKT1, SRC, and HSP90AA1 as the top five significant genes. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment assays showed that irigenin might affect inflammatory response, cytokine production, and cell death by the mitogen-activated protein kinase (MAPK) signaling pathway. In vivo experiment results manifested that irigenin decreased pathological changes, lung Wet/Dry weight ratio, and total protein content in bronchoalveolar lavage fluid (BALF). Irigenin also reduced the production of inflammatory cytokines, including tumor necrosis factor-a (TNF-a), interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-18 (IL-18), and neutrophil infiltration. Additionally, irigenin inhibited pulmonary apoptosis in LPS-treated ALI mice. Moreover, LPS-induced phosphorylation of p38, JNK, and ERK was significantly abated due to the treatment of irigenin. In summary, irigenin ameliorates LPS-induced ALI by suppressing pulmonary inflammation and apoptosis via inactivation of the MAPK signaling pathway. These findings indicated the therapeutic potential of irigenin in ALI.

UI MeSH Term Description Entries
D007529 Isoflavones 3-Phenylchromones. Isomeric form of FLAVONOIDS in which the benzene group is attached to the 3 position of the benzopyran ring instead of the 2 position. 3-Benzylchroman-4-One,3-Benzylidene-4-Chromanone,Homoisoflavone,Homoisoflavones,Isoflavone,Isoflavone Derivative,3-Benzylchroman-4-Ones,3-Benzylidene-4-Chromanones,Isoflavone Derivatives,3 Benzylchroman 4 One,3 Benzylchroman 4 Ones,3 Benzylidene 4 Chromanone,3 Benzylidene 4 Chromanones,Derivative, Isoflavone,Derivatives, Isoflavone
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D011014 Pneumonia Infection of the lung often accompanied by inflammation. Experimental Lung Inflammation,Lobar Pneumonia,Lung Inflammation,Pneumonia, Lobar,Pneumonitis,Pulmonary Inflammation,Experimental Lung Inflammations,Inflammation, Experimental Lung,Inflammation, Lung,Inflammation, Pulmonary,Inflammations, Lung,Inflammations, Pulmonary,Lobar Pneumonias,Lung Inflammation, Experimental,Lung Inflammations,Lung Inflammations, Experimental,Pneumonias,Pneumonias, Lobar,Pneumonitides,Pulmonary Inflammations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015850 Interleukin-6 A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS. Hepatocyte-Stimulating Factor,Hybridoma Growth Factor,IL-6,MGI-2,Myeloid Differentiation-Inducing Protein,Plasmacytoma Growth Factor,B Cell Stimulatory Factor-2,B-Cell Differentiation Factor,B-Cell Differentiation Factor-2,B-Cell Stimulatory Factor 2,B-Cell Stimulatory Factor-2,BSF-2,Differentiation Factor, B-Cell,Differentiation Factor-2, B-Cell,IFN-beta 2,IL6,Interferon beta-2,B Cell Differentiation Factor,B Cell Differentiation Factor 2,B Cell Stimulatory Factor 2,Differentiation Factor 2, B Cell,Differentiation Factor, B Cell,Differentiation-Inducing Protein, Myeloid,Growth Factor, Hybridoma,Growth Factor, Plasmacytoma,Hepatocyte Stimulating Factor,Interferon beta 2,Interleukin 6,Myeloid Differentiation Inducing Protein,beta-2, Interferon
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D055371 Acute Lung Injury A condition of lung damage that is characterized by bilateral pulmonary infiltrates (PULMONARY EDEMA) rich in NEUTROPHILS, and in the absence of clinical HEART FAILURE. This can represent a spectrum of pulmonary lesions, endothelial and epithelial, due to numerous factors (physical, chemical, or biological). Lung Injury, Acute,Acute Lung Injuries,Lung Injuries, Acute

Related Publications

Dan Liu, and Qing Wang, and Wen Yuan, and Qiang Wang
January 2006, Omics : a journal of integrative biology,
Dan Liu, and Qing Wang, and Wen Yuan, and Qiang Wang
June 2018, The Journal of biological chemistry,
Dan Liu, and Qing Wang, and Wen Yuan, and Qiang Wang
March 2017, Oncotarget,
Dan Liu, and Qing Wang, and Wen Yuan, and Qiang Wang
October 2014, Inflammation,
Dan Liu, and Qing Wang, and Wen Yuan, and Qiang Wang
October 2015, Fundamental & clinical pharmacology,
Dan Liu, and Qing Wang, and Wen Yuan, and Qiang Wang
May 2017, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Dan Liu, and Qing Wang, and Wen Yuan, and Qiang Wang
September 2021, The Journal of pharmacy and pharmacology,
Dan Liu, and Qing Wang, and Wen Yuan, and Qiang Wang
August 2008, Toxicological sciences : an official journal of the Society of Toxicology,
Copied contents to your clipboard!