An incubation method to determine the age of available nonstructural carbon in woody plant tissues. 2023

Drew M P Peltier, and Jim Lemoine, and Chris Ebert, and Xiaomei Xu, and Kiona Ogle, and Andrew D Richardson, and Mariah S Carbone
Center for Ecosystem Science and Society, Northern Arizona University, AZ.

Radiocarbon (∆14C) measurements of nonstructural carbon enable inference on the age and turnover time of stored photosynthate (e.g., sugars, starch), of which the largest pool in trees resides in the main bole. Because of potential issues with extraction-based methods, we introduce an incubation method to capture the ∆14C of nonstructural carbon via respired CO2. In this study, we compared the ∆14C obtained from these incubations with ∆14C from a well-established extraction method, using increment cores from a mature trembling aspen (Populus tremuloides). To understand any potential ∆14C disagreement, the yields from both methods were also benchmarked against the phenol-sulfuric acid concentration assay. We found incubations captured less than 100% of measured sugar and starch carbon, with recovery ranging from ~ 3% in heartwood to 85% in shallow sapwood. However, extractions universally over-yielded (mean 273 ± 101% expected sugar carbon; as high as 480%), where sugars represented less than half of extracted soluble carbon, indicating very poor specificity. While separation of soluble and insoluble nonstructural carbon is ostensibly a strength of extraction based methods, there was also evidence of poor separation of these two fractions in extractions. The ∆14C of respired CO2 and ∆14C from extractions were similar in the sapwood, while extractions resulted in comparatively higher ∆14C (older carbon) in heartwood and bark. Because yield and ∆14C discrepancies were largest in old tissues, incubations may better capture the ∆14C of nonstructural carbon that is actually metabolically available. That is, we suggest extractions include metabolically irrelevant carbon from dead tissues or cells, as well as carbon that is neither sugar nor starch. In contrast, nonstructural carbon captured by extractions must be respired to be measured. We thus suggest incubations of live tissues are a potentially viable, inexpensive, and versatile method to study the ∆14C of metabolically relevant (available) nonstructural carbon.

UI MeSH Term Description Entries

Related Publications

Drew M P Peltier, and Jim Lemoine, and Chris Ebert, and Xiaomei Xu, and Kiona Ogle, and Andrew D Richardson, and Mariah S Carbone
January 2014, Annual review of plant biology,
Drew M P Peltier, and Jim Lemoine, and Chris Ebert, and Xiaomei Xu, and Kiona Ogle, and Andrew D Richardson, and Mariah S Carbone
January 1996, Methods in enzymology,
Drew M P Peltier, and Jim Lemoine, and Chris Ebert, and Xiaomei Xu, and Kiona Ogle, and Andrew D Richardson, and Mariah S Carbone
October 2004, Tree physiology,
Drew M P Peltier, and Jim Lemoine, and Chris Ebert, and Xiaomei Xu, and Kiona Ogle, and Andrew D Richardson, and Mariah S Carbone
October 1949, Science progress,
Drew M P Peltier, and Jim Lemoine, and Chris Ebert, and Xiaomei Xu, and Kiona Ogle, and Andrew D Richardson, and Mariah S Carbone
June 2015, Functional plant biology : FPB,
Drew M P Peltier, and Jim Lemoine, and Chris Ebert, and Xiaomei Xu, and Kiona Ogle, and Andrew D Richardson, and Mariah S Carbone
January 2015, Isotopes in environmental and health studies,
Drew M P Peltier, and Jim Lemoine, and Chris Ebert, and Xiaomei Xu, and Kiona Ogle, and Andrew D Richardson, and Mariah S Carbone
January 2020, Toxicon : official journal of the International Society on Toxinology,
Drew M P Peltier, and Jim Lemoine, and Chris Ebert, and Xiaomei Xu, and Kiona Ogle, and Andrew D Richardson, and Mariah S Carbone
March 2020, BMC biotechnology,
Drew M P Peltier, and Jim Lemoine, and Chris Ebert, and Xiaomei Xu, and Kiona Ogle, and Andrew D Richardson, and Mariah S Carbone
October 2011, Aging,
Drew M P Peltier, and Jim Lemoine, and Chris Ebert, and Xiaomei Xu, and Kiona Ogle, and Andrew D Richardson, and Mariah S Carbone
December 2006, Oecologia,
Copied contents to your clipboard!