Neuroprotective effect of Vesatolimod in an experimental autoimmune encephalomyelitis mice model. 2023

Xian Jiang, and Yifan Song, and Jie Fang, and Xiaosheng Yang, and Shuhua Mu, and Jian Zhang
School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, Guangdong, China.

BACKGROUND Multiple sclerosis is a chronic demyelinating autoimmune disease accompanied by inflammation and loss of axons and neurons. Toll-like receptors play crucial roles in the innate immune system and inflammation. However, few studies have explored the specific effects of toll-like receptor 7 signaling pathway in multiple sclerosis. To explore underlying effects to develop a new therapeutic target, we use Vesatolimod, a safe and well-tolerated agonist of toll-like receptor 7, to assess the possible effects in Experimental autoimmune encephalomyelitis (EAE) animal model. METHODS EAE animal model was induced by injection of MOG35-55 and monitored daily for clinical symptoms, and the treatment group was given Vesatolimod at the onset of illness. The therapeutic effects of Vesatolimod on EAE inflammation, demyelination, CD107b cells and T cells infiltration, and microglia activation was evaluated. Autophagy within the spinal cords of EAE mice was also preliminarily assessed. RESULTS Treatment with Vesatolimod significantly alleviated clinical symptoms of EAE from day 18 post-immunization and decreased the expression levels of inflammatory cytokines, particularly Eotaxin and IL-12 (P40), in peripheral blood. It also inhibited demyelination in spinal cords. Moreover, VES treatment reduced activation of microglia, infiltration of CD3 + T cells and CD107b + cells, as well as inhibited the autophagy-related proteins expression in the spinal cords of EAE mice. CONCLUSIONS Our results indicate that Vesatolimod exhibits protective effects on EAE mice and is promising for treatment of MS.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009103 Multiple Sclerosis An autoimmune disorder mainly affecting young adults and characterized by destruction of myelin in the central nervous system. Pathologic findings include multiple sharply demarcated areas of demyelination throughout the white matter of the central nervous system. Clinical manifestations include visual loss, extra-ocular movement disorders, paresthesias, loss of sensation, weakness, dysarthria, spasticity, ataxia, and bladder dysfunction. The usual pattern is one of recurrent attacks followed by partial recovery (see MULTIPLE SCLEROSIS, RELAPSING-REMITTING), but acute fulminating and chronic progressive forms (see MULTIPLE SCLEROSIS, CHRONIC PROGRESSIVE) also occur. (Adams et al., Principles of Neurology, 6th ed, p903) MS (Multiple Sclerosis),Multiple Sclerosis, Acute Fulminating,Sclerosis, Disseminated,Disseminated Sclerosis,Sclerosis, Multiple
D004681 Encephalomyelitis, Autoimmune, Experimental An experimental animal model for central nervous system demyelinating disease. Inoculation with a white matter emulsion combined with FREUND'S ADJUVANT, myelin basic protein, or purified central myelin triggers a T cell-mediated immune response directed towards central myelin. The pathologic features are similar to MULTIPLE SCLEROSIS, including perivascular and periventricular foci of inflammation and demyelination. Subpial demyelination underlying meningeal infiltrations also occurs, which is also a feature of ENCEPHALOMYELITIS, ACUTE DISSEMINATED. Passive immunization with T-cells from an afflicted animal to a normal animal also induces this condition. (From Immunol Res 1998;17(1-2):217-27; Raine CS, Textbook of Neuropathology, 2nd ed, p604-5) Autoimmune Encephalomyelitis, Experimental,Encephalomyelitis, Allergic,Encephalomyelitis, Experimental Autoimmune,Allergic Encephalomyelitis,Allergic Encephalomyelitis, Experimental,Autoimmune Experimental Encephalomyelitis,Experimental Allergic Encephalomyelitis,Experimental Autoimmune Encephalomyelitis,Encephalomyelitis, Autoimmune Experimental,Encephalomyelitis, Experimental Allergic,Experimental Allergic Encephalomyelitides,Experimental Encephalomyelitis, Autoimmune
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D051199 Toll-Like Receptor 7 A pattern recognition receptor that binds several forms of imidazo-quinoline including the antiviral compound Imiquimod. TLR7 Receptor,Receptor, TLR7,Toll Like Receptor 7
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018696 Neuroprotective Agents Drugs intended to prevent damage to the brain or spinal cord from ischemia, stroke, convulsions, or trauma. Some must be administered before the event, but others may be effective for some time after. They act by a variety of mechanisms, but often directly or indirectly minimize the damage produced by endogenous excitatory amino acids. Neuroprotectant,Neuroprotective Agent,Neuroprotective Drug,Neuroprotectants,Neuroprotective Drugs,Neuroprotective Effect,Neuroprotective Effects,Agent, Neuroprotective,Agents, Neuroprotective,Drug, Neuroprotective,Drugs, Neuroprotective,Effect, Neuroprotective,Effects, Neuroprotective

Related Publications

Xian Jiang, and Yifan Song, and Jie Fang, and Xiaosheng Yang, and Shuhua Mu, and Jian Zhang
April 2024, Brain research bulletin,
Xian Jiang, and Yifan Song, and Jie Fang, and Xiaosheng Yang, and Shuhua Mu, and Jian Zhang
January 2016, Methods in molecular biology (Clifton, N.J.),
Xian Jiang, and Yifan Song, and Jie Fang, and Xiaosheng Yang, and Shuhua Mu, and Jian Zhang
June 2012, Journal of neuroendocrinology,
Xian Jiang, and Yifan Song, and Jie Fang, and Xiaosheng Yang, and Shuhua Mu, and Jian Zhang
May 1995, Cellular immunology,
Xian Jiang, and Yifan Song, and Jie Fang, and Xiaosheng Yang, and Shuhua Mu, and Jian Zhang
October 2019, Neurochemistry international,
Xian Jiang, and Yifan Song, and Jie Fang, and Xiaosheng Yang, and Shuhua Mu, and Jian Zhang
October 2017, Journal of neuroinflammation,
Xian Jiang, and Yifan Song, and Jie Fang, and Xiaosheng Yang, and Shuhua Mu, and Jian Zhang
February 2016, Journal of molecular neuroscience : MN,
Xian Jiang, and Yifan Song, and Jie Fang, and Xiaosheng Yang, and Shuhua Mu, and Jian Zhang
June 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Xian Jiang, and Yifan Song, and Jie Fang, and Xiaosheng Yang, and Shuhua Mu, and Jian Zhang
October 2023, Iranian journal of allergy, asthma, and immunology,
Xian Jiang, and Yifan Song, and Jie Fang, and Xiaosheng Yang, and Shuhua Mu, and Jian Zhang
March 2024, Nature neuroscience,
Copied contents to your clipboard!