Regional differences in postischemic recovery in the stunned canine myocardium. 1987

N E Farber, and G M Pieper, and G J Gross
Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee 53226.

To determine if differences exist in the degree of ischemic damage and in postischemic recovery when different coronary arteries are occluded and reperfused, 40 barbital-anesthetized dogs were subjected to brief 15-minute periods of coronary artery occlusion followed by 3 hours of reperfusion ("stunned" myocardium) of the left anterior descending (LAD) or the left circumflex (LCX) coronary arteries. Myocardial segment shortening (%SS) in the subendocardium of nonischemic and ischemic reperfused areas was measured by sonomicrometry, and regional myocardial blood flow was measured by radioactive microspheres. Transmural tissue biopsies were taken at the end of reperfusion for the measurement of adenine nucleotides and total tissue water content. Arterial and local coronary venous blood samples were collected during preocclusion, during occlusion, and at 30 and 180 minutes of reperfusion for determination of blood oxygen content and oxygen consumption in the ischemic area. During occlusion, subendocardial blood flow (LAD flow = 0.11 +/- 0.02; LCX flow = 0.15 +/- 0.04 ml/min/gm), myocardial oxygen consumption (LAD = 2.4 +/- 0.7; LCX = 2.7 +/- 0.7 ml/min/100 gm), and areas of the left ventricle at risk (LAD = 27.4 +/- 2.3%; LCX = 32.4 +/- 2.4) were similar in both groups, thus indicating equivalent degrees of ischemia. There were no differences between groups in hemodynamics throughout the experiment or in the loss of myocardial high-energy phosphates or increase in total tissue water in the ischemic reperfused area at 3 hours of reperfusion. There was a significantly greater loss (p less than 0.05) of systolic wall function during LAD versus LCX occlusion and a greater recovery of segment function from 5 minutes throughout 1 hour of reperfusion after LCX occlusion (p less than 0.05), with no difference in %SS at 2 and 3 hours following reperfusion. Thus, although similar changes occurred in blood flow, metabolite parameters, tissue edema, wall function, and overall hemodynamics when either the LAD or LCX perfusion territories were occluded and reperfused, the loss of systolic wall function and recovery of segment shortening were more variable after regional stunning of the LCX perfusion bed. These data suggest that evaluation of pharmacologic or surgical interventions to improve postischemic functional recovery may be more reliably performed when the LAD coronary artery is the vessel occluded.

UI MeSH Term Description Entries
D008297 Male Males
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D003326 Coronary Circulation The circulation of blood through the CORONARY VESSELS of the HEART. Circulation, Coronary
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D003331 Coronary Vessels The veins and arteries of the HEART. Coronary Arteries,Sinus Node Artery,Coronary Veins,Arteries, Coronary,Arteries, Sinus Node,Artery, Coronary,Artery, Sinus Node,Coronary Artery,Coronary Vein,Coronary Vessel,Sinus Node Arteries,Vein, Coronary,Veins, Coronary,Vessel, Coronary,Vessels, Coronary
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005260 Female Females
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

N E Farber, and G M Pieper, and G J Gross
January 1993, American heart journal,
N E Farber, and G M Pieper, and G J Gross
February 1990, Journal of cardiothoracic anesthesia,
N E Farber, and G M Pieper, and G J Gross
November 1987, The American journal of cardiology,
N E Farber, and G M Pieper, and G J Gross
December 1982, Circulation,
N E Farber, and G M Pieper, and G J Gross
August 1987, Circulation,
N E Farber, and G M Pieper, and G J Gross
April 1995, The Journal of thoracic and cardiovascular surgery,
N E Farber, and G M Pieper, and G J Gross
January 2003, Medicina,
N E Farber, and G M Pieper, and G J Gross
September 1999, Anesthesiology,
N E Farber, and G M Pieper, and G J Gross
August 1989, Circulation research,
Copied contents to your clipboard!