Nucleus pulposus related lncRNA and mRNA expression profiles in intervertebral disc degeneration. 2023

Yanjiao Wu, and Sen Li, and Jianlin Shen, and Zhiyun Wang, and Huan Liu
Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China.

In the present study, we aimed to have a comprehensive understanding of nucleus pulposus related long noncoding RNA (lncRNA) and mRNA expression profiles in intervertebral disc degeneration (IDD). In total, 2418 mRNAs and 528 lncRNAs were found to be differentially expressed in the IDD group compared with the Control group. Combining microarray datasets and sequencing data, 5 overlapping DEMs and 7 overlapping DELs were identified. NF-κB signaling pathway, PI3K-Akt signaling pathway and Wnt/β-catenin signaling pathway were strongly linked with enriched GO terms and KEGG pathways. The ceRNA network suggested that lnc-TMEM44-AS1-hsa-miR-206-HDAC4 may be one crucial axis in IDD. PPI network analysis was constructed with 309 nodes and 129 edges. And the highest connectivity degrees were ALB, APOB and CCL2. This study suggested that specific lncRNAs and ceRNA axes may be crucial in the development of IDD. It provides a new perspective for delaying IDD process and enhancing intervertebral disc repair.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000070614 Nucleus Pulposus Fibrocartilage inner core of the intervertebral disc. Prolapsed or bulged nucleus pulposus leads to INTERVERTEBRAL DISC DISPLACEMENT while proliferation of cells in the nucleus pulposus is associated with INTERVERTEBRAL DISC DEGENERATION.
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D055959 Intervertebral Disc Degeneration Degenerative changes in the INTERVERTEBRAL DISC due to aging or structural damage, especially to the vertebral end-plates. Degenerative Disc Disease,Degenerative Intervertebral Discs,Degenerative Intervertebral Disks,Intervertebral Disk Degeneration,Disc Degeneration,Disc Degradation,Disk Degeneration,Disk Degradation,Degeneration, Disc,Degeneration, Disk,Degeneration, Intervertebral Disc,Degeneration, Intervertebral Disk,Degenerative Disc Diseases,Degenerative Intervertebral Disc,Degenerative Intervertebral Disk,Degradation, Disc,Degradation, Disk,Disc Degeneration, Intervertebral,Disc Degenerations,Disc Degradations,Disc Disease, Degenerative,Disc, Degenerative Intervertebral,Disk Degeneration, Intervertebral,Disk Degenerations,Disk Degradations,Disk, Degenerative Intervertebral,Intervertebral Disc Degenerations,Intervertebral Disc, Degenerative,Intervertebral Disk Degenerations,Intervertebral Disk, Degenerative
D060449 Wnt Signaling Pathway A complex signaling pathway whose name is derived from the DROSOPHILA Wg gene, and the vertebrate INT gene. The signaling pathway is initiated by the binding of WNT PROTEINS to cell surface WNT RECEPTORS which interact with the AXIN SIGNALING COMPLEX and an array of second messengers that influence the actions of BETA CATENIN. Wnt Signaling,Wnt Pathway,Wnt Pathway, Canonical,Wnt beta-Catenin Signaling Pathway,Canonical Wnt Pathway,Canonical Wnt Pathways,Pathway, Canonical Wnt,Pathway, Wnt,Pathway, Wnt Signaling,Signaling Pathway, Wnt,Signaling, Wnt,Wnt Signaling Pathways,Wnt Signalings,Wnt beta Catenin Signaling Pathway
D062085 RNA, Long Noncoding A class of untranslated RNA molecules that are typically greater than 200 nucleotides in length and do not code for proteins. Members of this class have been found to play roles in transcriptional regulation, post-transcriptional processing, CHROMATIN REMODELING, and in the epigenetic control of chromatin. LincRNA,RNA, Long Untranslated,LINC RNA,LincRNAs,Long Intergenic Non-Protein Coding RNA,Long Non-Coding RNA,Long Non-Protein-Coding RNA,Long Noncoding RNA,Long ncRNA,Long ncRNAs,RNA, Long Non-Translated,lncRNA,Long Intergenic Non Protein Coding RNA,Long Non Coding RNA,Long Non Protein Coding RNA,Long Non-Translated RNA,Long Untranslated RNA,Non-Coding RNA, Long,Non-Protein-Coding RNA, Long,Non-Translated RNA, Long,Noncoding RNA, Long,RNA, Long Non Translated,RNA, Long Non-Coding,RNA, Long Non-Protein-Coding,Untranslated RNA, Long,ncRNA, Long,ncRNAs, Long
D019869 Phosphatidylinositol 3-Kinases Phosphotransferases that catalyzes the conversion of 1-phosphatidylinositol to 1-phosphatidylinositol 3-phosphate. Many members of this enzyme class are involved in RECEPTOR MEDIATED SIGNAL TRANSDUCTION and regulation of vesicular transport with the cell. Phosphatidylinositol 3-Kinases have been classified both according to their substrate specificity and their mode of action within the cell. PI-3 Kinase,Phosphatidylinositol-3-OH Kinase,PtdIns 3-Kinase,PI 3-Kinase,PI-3K,PI3 Kinases,PI3-Kinase,Phosphoinositide 3 Kinases,Phosphoinositide 3-Hydroxykinase,PtdIns 3-Kinases,3-Hydroxykinase, Phosphoinositide,Kinase, PI-3,Kinase, Phosphatidylinositol-3-OH,Kinases, PI3,Kinases, Phosphoinositide 3,PI 3 Kinase,PI3 Kinase,Phosphatidylinositol 3 Kinases,Phosphatidylinositol 3 OH Kinase,Phosphoinositide 3 Hydroxykinase,PtdIns 3 Kinase,PtdIns 3 Kinases
D035683 MicroRNAs Small double-stranded, non-protein coding RNAs, 21-25 nucleotides in length generated from single-stranded microRNA gene transcripts by the same RIBONUCLEASE III, Dicer, that produces small interfering RNAs (RNA, SMALL INTERFERING). They become part of the RNA-INDUCED SILENCING COMPLEX and repress the translation (TRANSLATION, GENETIC) of target RNA by binding to homologous 3'UTR region as an imperfect match. The small temporal RNAs (stRNAs), let-7 and lin-4, from C. elegans, are the first 2 miRNAs discovered, and are from a class of miRNAs involved in developmental timing. RNA, Small Temporal,Small Temporal RNA,miRNA,stRNA,Micro RNA,MicroRNA,Primary MicroRNA,Primary miRNA,miRNAs,pre-miRNA,pri-miRNA,MicroRNA, Primary,RNA, Micro,Temporal RNA, Small,miRNA, Primary,pre miRNA,pri miRNA

Related Publications

Yanjiao Wu, and Sen Li, and Jianlin Shen, and Zhiyun Wang, and Huan Liu
August 2001, Clinical orthopaedics and related research,
Yanjiao Wu, and Sen Li, and Jianlin Shen, and Zhiyun Wang, and Huan Liu
January 2021, Disease markers,
Yanjiao Wu, and Sen Li, and Jianlin Shen, and Zhiyun Wang, and Huan Liu
March 2023, International journal of molecular sciences,
Yanjiao Wu, and Sen Li, and Jianlin Shen, and Zhiyun Wang, and Huan Liu
July 2009, Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery,
Yanjiao Wu, and Sen Li, and Jianlin Shen, and Zhiyun Wang, and Huan Liu
July 2017, Spine,
Yanjiao Wu, and Sen Li, and Jianlin Shen, and Zhiyun Wang, and Huan Liu
March 2020, BMC musculoskeletal disorders,
Yanjiao Wu, and Sen Li, and Jianlin Shen, and Zhiyun Wang, and Huan Liu
February 2020, Cell biology international,
Yanjiao Wu, and Sen Li, and Jianlin Shen, and Zhiyun Wang, and Huan Liu
January 2023, Folia morphologica,
Yanjiao Wu, and Sen Li, and Jianlin Shen, and Zhiyun Wang, and Huan Liu
May 2024, International immunopharmacology,
Yanjiao Wu, and Sen Li, and Jianlin Shen, and Zhiyun Wang, and Huan Liu
July 2018, Lasers in medical science,
Copied contents to your clipboard!