The primary structure of the pallid bat (Antrozous pallidus, Chiroptera) hemoglobin. 1987

T Kleinschmidt, and B F Koop, and G Braunitzer
Max-Planck-Institut für Biochemie, Abteilung Proteinchemie, Martinsried bei München.

The complete primary structure of the hemoglobin from the Pallid Bat (Antrozous pallidus, Microchiroptera) is presented. This hemoglobin consists of two components with identical amino-acid sequences, differing, however, in the N-terminus which is formylated in 12.5% of the beta-chains. The alpha- and beta-chains were separated by reversed phase high performance liquid chromatography. The sequences of both chains were established by automatic Edman degradation with the film technique or gas phase method using the native chains and the tryptic peptides. The formylation of a part of the N-terminal peptide of the beta-chains was determined by mass spectrometric examination. Compared to the corresponding human chains we found 14 substitutions in the alpha-chains and 21 in the beta-chains. One substitution in the alpha-chains and three in the beta-chains are involved in alpha 1/beta 1-contacts. Among these the exchange beta 123(H1)Thr----Cys is unusual because cysteine was so far not found in this position of mammalian beta-chains. Compared to the hemoglobin of Myotis velifer, another representative of the family Vespertilionidae, 5 residues are replaced in the alpha-chains and 18 in the beta-chains.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002685 Chiroptera Order of mammals whose members are adapted for flight. It includes bats, flying foxes, and fruit bats. Bats,Flying Foxes,Horseshoe Bats,Pteropodidae,Pteropus,Rhinolophus,Rousettus,Bat, Horseshoe,Bats, Horseshoe,Foxes, Flying,Horseshoe Bat
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass

Related Publications

T Kleinschmidt, and B F Koop, and G Braunitzer
May 1976, Zeitschrift fur Tierpsychologie,
T Kleinschmidt, and B F Koop, and G Braunitzer
July 2009, The Journal of comparative neurology,
T Kleinschmidt, and B F Koop, and G Braunitzer
January 2017, PloS one,
T Kleinschmidt, and B F Koop, and G Braunitzer
January 1993, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
T Kleinschmidt, and B F Koop, and G Braunitzer
November 1976, Journal of mammalogy,
T Kleinschmidt, and B F Koop, and G Braunitzer
March 1984, Journal of reproduction and fertility,
T Kleinschmidt, and B F Koop, and G Braunitzer
January 1986, Physiology & behavior,
T Kleinschmidt, and B F Koop, and G Braunitzer
January 1984, Comparative biochemistry and physiology. A, Comparative physiology,
T Kleinschmidt, and B F Koop, and G Braunitzer
March 1987, Biological chemistry Hoppe-Seyler,
T Kleinschmidt, and B F Koop, and G Braunitzer
September 2018, Scientific reports,
Copied contents to your clipboard!