Spontaneous fusion of phosphatidylcholine small unilamellar vesicles in the fluid phase. 1987

B R Lentz, and T J Carpenter, and D R Alford
Department of Biochemistry and Nutrition, University of North Carolina, Chapel Hill 27514.

Using a high-sensitivity differential scanning microcalorimeter capable of performing cooling scans, we have examined the phase behavior of small unilamellar vesicles (SUV) as a function of time of storage above their order-disorder phase transition. Vesicles composed of dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were examined. Cooling scans on fresh (5-7-h postsonication) samples revealed broad, relatively simple heat capacity peaks (peak temperatures: 19.9 degrees C for DMPC, 37.8 degrees C for DPPC) free of high-temperature spikes or shoulders. Subsequent heating scans displayed a sharp peak characteristic of previously described fusion products formed below the phase transition. SUV samples stored for 1 or more days above their phase transition displayed a moderately broad, high-temperature shoulder (23.8 degrees C for DMPC and 40.2 degrees C for DPPC) in the cooling profile. For DMPC, the enthalpy associated with this peak increased in a first-order fashion with time. Hydrolysis products were not detected until 12-20 days of storage. Both the rate and extent of shoulder appearance increased with temperature (k = 0.0017 h-1, fraction of total enthalpy = 0.1 at 36 degrees C; k = 0.0037 h-1, fraction = 0.2 at 42 degrees C). Freeze-fracture electron micrographs confirmed that an intermediate-sized vesicle population (diameters 400-500 A) appeared in SUV samples stored above their phase transition. Also, the trapped volume of DMPC SUV increased from 0.26 microL/mumol after 17 h of storage to 0.54 microL/mumol after storage for 16 days at 36 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D002152 Calorimetry, Differential Scanning Differential thermal analysis in which the sample compartment of the apparatus is a differential calorimeter, allowing an exact measure of the heat of transition independent of the specific heat, thermal conductivity, and other variables of the sample. Differential Thermal Analysis, Calorimetric,Calorimetric Differential Thermal Analysis,Differential Scanning Calorimetry,Scanning Calorimetry, Differential
D004134 Dimyristoylphosphatidylcholine A synthetic phospholipid used in liposomes and lipid bilayers for the study of biological membranes. Dimyristoyllecithin,1,2-Dimyristoyl-glycero-3-phosphorylcholine,1,2-Ditetradecanoyl-glycero-3-phosphocholine,1,2-Ditetradecyl-glycero-3-phosphocholine,DMCP,DMPC,1,2 Dimyristoyl glycero 3 phosphorylcholine,1,2 Ditetradecanoyl glycero 3 phosphocholine,1,2 Ditetradecyl glycero 3 phosphocholine
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D015060 1,2-Dipalmitoylphosphatidylcholine Synthetic phospholipid used in liposomes and lipid bilayers to study biological membranes. It is also a major constituent of PULMONARY SURFACTANTS. Dipalmitoyllecithin,1,2-Dihexadecyl-sn-Glycerophosphocholine,1,2-Dipalmitoyl-Glycerophosphocholine,Dipalmitoyl Phosphatidylcholine,Dipalmitoylglycerophosphocholine,Dipalmitoylphosphatidylcholine,1,2 Dihexadecyl sn Glycerophosphocholine,1,2 Dipalmitoyl Glycerophosphocholine,1,2 Dipalmitoylphosphatidylcholine,Phosphatidylcholine, Dipalmitoyl

Related Publications

B R Lentz, and T J Carpenter, and D R Alford
October 1981, Biochemistry,
B R Lentz, and T J Carpenter, and D R Alford
January 1986, The Journal of membrane biology,
B R Lentz, and T J Carpenter, and D R Alford
August 1982, Biochemistry,
B R Lentz, and T J Carpenter, and D R Alford
October 1993, Biochimica et biophysica acta,
B R Lentz, and T J Carpenter, and D R Alford
July 1989, Biochimica et biophysica acta,
B R Lentz, and T J Carpenter, and D R Alford
February 2004, Canadian journal of physiology and pharmacology,
Copied contents to your clipboard!