Impact of parabens on drinking water bacteria and their biofilms: The role of exposure time and substrate materials. 2023

Ana Rita Pereira, and Inês B Gomes, and Manuel Simões
LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.

Parabens have been detected in drinking water (DW) worldwide, however, their impact on DW microbial communities remains to be explored. Microorganisms can easily adapt to environmental changes. Therefore, their exposure to contaminants of emerging concern, particularly parabens, in DW distribution systems (DWDS) may affect the microbiological quality and safety of the DW reaching the consumers tap. This work provides a pioneer evaluation of the effects of methylparaben (MP), propylparaben (PP), butylparaben (BP), and their combination (MIX), in bacterial biofilms formed on different surfaces, representative of DWDS materials - high-density polyethylene (HDPE), polypropylene (PPL) and polyvinyl chloride (PVC). Acinetobacter calcoaceticus and Stenotrophomonas maltophilia, isolated from DW, were used to form single and dual-species biofilms on the surface materials selected. The exposure to MP for 7 days caused the most significant effects on biofilms, by increasing their cellular culturability, density, and thickness up to 233%, 150%, and 224%, respectively, in comparison to non-exposed biofilms. Overall, more pronounced alterations were detected for single biofilms than for dual-species biofilms when HDPE and PPL, demonstrating that the surface material used affected the action of parabens on biofilms. Swimming motility and the production of virulence factors (protease and gelatinase) by S. maltophilia were increased up to 141%, 41%, and 73%, respectively, when exposed to MP for 7 days. The overall results highlight the potential of parabens to interfere with DW bacteria in planktonic state and biofilms, and compromise the DW microbiological quality and safety.

UI MeSH Term Description Entries
D010226 Parabens Methyl, propyl, butyl, and ethyl esters of p-hydroxybenzoic acid. They have been approved by the FDA as antimicrobial agents for foods and pharmaceuticals. (From Hawley's Condensed Chemical Dictionary, 11th ed, p872) 4-Hydroxybenzoic Acids,Paraben,para-Hydroxybenzoic Acids,4 Hydroxybenzoic Acids,para Hydroxybenzoic Acids
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D060766 Drinking Water Water that is intended to be ingested. Bottled Water,Potable Water,Water, Bottled,Water, Drinking,Water, Potable
D018441 Biofilms Encrustations formed from microbes (bacteria, algae, fungi, plankton, or protozoa) embedded in an EXTRACELLULAR POLYMERIC SUBSTANCE MATRIX that is secreted by the microbes. They occur on body surfaces such as teeth (DENTAL DEPOSITS); inanimate objects, and bodies of water. Biofilms are prevented from forming by treating surfaces with DENTIFRICES; DISINFECTANTS; ANTI-INFECTIVE AGENTS; and anti-fouling agents. Biofilm
D020959 Polyethylene A vinyl polymer made from ethylene. It can be branched or linear. Branched or low-density polyethylene is tough and pliable but not to the same degree as linear polyethylene. Linear or high-density polyethylene has a greater hardness and tensile strength. Polyethylene is used in a variety of products, including implants and prostheses. HDPE,High-Density Polyethylene,Polythene,LDPE,Low-Density Polyethylene,High Density Polyethylene,Low Density Polyethylene,Polyethylene, High-Density,Polyethylene, Low-Density

Related Publications

Ana Rita Pereira, and Inês B Gomes, and Manuel Simões
August 2022, Journal of hazardous materials,
Ana Rita Pereira, and Inês B Gomes, and Manuel Simões
November 2011, International journal of hygiene and environmental health,
Ana Rita Pereira, and Inês B Gomes, and Manuel Simões
April 2003, FEMS microbiology ecology,
Ana Rita Pereira, and Inês B Gomes, and Manuel Simões
May 2005, Water research,
Ana Rita Pereira, and Inês B Gomes, and Manuel Simões
February 2000, Journal of endourology,
Ana Rita Pereira, and Inês B Gomes, and Manuel Simões
February 2022, The Science of the total environment,
Ana Rita Pereira, and Inês B Gomes, and Manuel Simões
December 1998, Journal of applied microbiology,
Ana Rita Pereira, and Inês B Gomes, and Manuel Simões
June 2010, International journal of hygiene and environmental health,
Ana Rita Pereira, and Inês B Gomes, and Manuel Simões
March 2018, Environmental science & technology,
Copied contents to your clipboard!