Effects of purified myosin light chain kinase on myosin light chain phosphorylation and catecholamine secretion in digitonin-permeabilized chromaffin cells. 1987

S A Lee, and R W Holz, and D R Hathaway
Department of Pharmacology, University of Michigan Medical School, Ann Arbor 48109-0010.

Many non-muscle cells including chromaffin cells contain actin and myosin. The 20,000 dalton light chain subunits of myosin can be phosphorylated by a Ca2+/calmodulin-dependent enzyme, myosin light chain kinase. In tissues other than striated muscle, light chain phosphorylation is required for actin-induced myosin ATPase activity. The possibility that actin and myosin are involved in catecholamine secretion was investigated by determining whether increased phosphorylation in the presence of [gamma-32P]ATP of myosin light chain by myosin light chain kinase enhances secretion from digitonin-treated chromaffin cells. In the absence of exogenous myosin light chain kinase, 1 microM Ca2+ caused a 30-40% enhancement of the phosphorylation of a 20 kDa protein. This protein was identified on 2-dimensional gels as myosin light chain by its comigration with purified myosin light chain. Purified myosin light chain kinase (400 micrograms/ml) in the presence of calmodulin (10 microM) caused little or no enhancement of myosin light chain phosphorylation in the absence of Ca2+ in digitonin-treated cells. In the presence of 1 microM Ca2+, myosin light chain kinase (400 micrograms/ml) caused an approximately two-fold increase in myosin light chain phosphorylation in digitonin-treated cells in 5 min. The phosphorylation required permeabilization of the cells by digitonin and occurred within the cells rather than in the medium. Myosin light chain kinase-induced phosphorylation of myosin light chain was maximal at 1 microM Ca2+. Under identical conditions to those of the phosphorylation experiments, secretion was unaltered by myosin light chain kinase. The experiments indicate that the phosphorylation of myosin light chain by myosin light chain kinase is not a limiting factor in secretion in digitonin-treated chromaffin cells and suggest that the activation of myosin is not directly involved in secretion from the cells. The experiments also demonstrate the feasibility of investigation of effects of exogenously added proteins on secretion in digitonin-treated cells.

UI MeSH Term Description Entries
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D009219 Myosin-Light-Chain Kinase An enzyme that phosphorylates myosin light chains in the presence of ATP to yield myosin-light chain phosphate and ADP, and requires calcium and CALMODULIN. The 20-kDa light chain is phosphorylated more rapidly than any other acceptor, but light chains from other myosins and myosin itself can act as acceptors. The enzyme plays a central role in the regulation of smooth muscle contraction. Myosin Kinase,Myosin LCK,Myosin Regulatory Light-Chain Kinase,Kinase, Myosin,Kinase, Myosin-Light-Chain,LCK, Myosin,Myosin Light Chain Kinase,Myosin Regulatory Light Chain Kinase
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D004072 Digitonin A glycoside obtained from Digitalis purpurea; the aglycone is digitogenin which is bound to five sugars. Digitonin solubilizes lipids, especially in membranes and is used as a tool in cellular biochemistry, and reagent for precipitating cholesterol. It has no cardiac effects. Digitin
D000313 Adrenal Medulla The inner portion of the adrenal gland. Derived from ECTODERM, adrenal medulla consists mainly of CHROMAFFIN CELLS that produces and stores a number of NEUROTRANSMITTERS, mainly adrenaline (EPINEPHRINE) and NOREPINEPHRINE. The activity of the adrenal medulla is regulated by the SYMPATHETIC NERVOUS SYSTEM. Adrenal Medullas,Medulla, Adrenal,Medullas, Adrenal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S A Lee, and R W Holz, and D R Hathaway
August 1986, The Journal of biological chemistry,
S A Lee, and R W Holz, and D R Hathaway
August 1988, Journal of neurochemistry,
S A Lee, and R W Holz, and D R Hathaway
July 1992, Biochemical and biophysical research communications,
S A Lee, and R W Holz, and D R Hathaway
March 1987, Biochemical and biophysical research communications,
S A Lee, and R W Holz, and D R Hathaway
June 1986, Journal of neurochemistry,
S A Lee, and R W Holz, and D R Hathaway
April 1983, The Journal of biological chemistry,
S A Lee, and R W Holz, and D R Hathaway
April 1983, The Journal of biological chemistry,
Copied contents to your clipboard!