Macrophages Promote Ovarian Cancer-Mesothelial Cell Adhesion by Upregulation of ITGA2 and VEGFC in Mesothelial Cells. 2023

Seung-Kye Cho, and Kijun Lee, and Jeong-Hwa Woo, and Jung-Hye Choi
Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea.

Ovarian cancer is a metastatic disease that frequently exhibits extensive peritoneal dissemination. Recent studies have revealed that noncancerous cells inside the tumor microenvironment, such as macrophages and mesothelial cells, may play a role in ovarian cancer metastasis. In this study, we found that human ovarian cancer cells (A2780 and SKOV3) adhered more to human mesothelial Met5A cells stimulated by macrophages (M-Met5A) in comparison to unstimulated control Met5A cells. The mRNA sequencing revealed that 94 adhesion-related genes, including FMN1, ITGA2, COL13A1, VEGFC, and NRG1, were markedly upregulated in M-Met5A cells. Knockdown of ITGA2 and VEGFC in M-Met5A cells significantly inhibited the adhesion of ovarian cancer cells. Inhibition of the JNK and Akt signaling pathways suppressed ITGA2 and VEGFC expression in M-Met5A cells as well as ovarian cancer-mesothelial cell adhesion. Furthermore, increased production of CC chemokine ligand 2 (CCL2) and CCL5 by macrophages elevated ovarian cancer-mesothelial cell adhesion. These findings imply that macrophages may play a significant role in ovarian cancer-mesothelial cell adhesion by inducing the mesothelial expression of adhesion-related genes via the JNK and Akt pathways.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D042582 Vascular Endothelial Growth Factor C A vascular endothelial growth factor that specifically binds to VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR-2 and VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR-3. In addition to being an angiogenic factor it can act on LYMPHATIC VESSELS to stimulate LYMPHANGIOGENESIS. It is similar in structure to VASCULAR ENDOTHELIAL GROWTH FACTOR D in that they both contain N- and C-terminal extensions that were not found in other VEGF family members. VEGF-C,Vascular Endothelial Growth Factor-C
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D051057 Proto-Oncogene Proteins c-akt Protein-serine-threonine kinases that contain PLECKSTRIN HOMOLOGY DOMAINS and are activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. They play a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells. akt Proto-Oncogene Protein,c-akt Protein,AKT1 Protein Kinase,AKT2 Protein Kinase,AKT3 Protein Kinase,Akt-alpha Protein,Akt-beta Protein,Akt-gamma Protein,Protein Kinase B,Protein Kinase B alpha,Protein Kinase B beta,Protein Kinase B gamma,Protein-Serine-Threonine Kinase (Rac),Proto-Oncogene Protein Akt,Proto-Oncogene Protein RAC,Proto-Oncogene Proteins c-akt1,Proto-Oncogene Proteins c-akt2,Proto-Oncogene Proteins c-akt3,RAC-PK Protein,Rac Protein Kinase,Rac-PK alpha Protein,Rac-PK beta Protein,Related to A and C-Protein,c-akt Proto-Oncogene Protein,Akt alpha Protein,Akt beta Protein,Akt gamma Protein,Akt, Proto-Oncogene Protein,Protein, akt Proto-Oncogene,Protein, c-akt Proto-Oncogene,Proteins c-akt1, Proto-Oncogene,Proteins c-akt2, Proto-Oncogene,Proteins c-akt3, Proto-Oncogene,Proto Oncogene Protein Akt,Proto Oncogene Protein RAC,Proto Oncogene Proteins c akt,Proto Oncogene Proteins c akt1,Proto Oncogene Proteins c akt2,Proto Oncogene Proteins c akt3,Proto-Oncogene Protein, akt,Proto-Oncogene Protein, c-akt,RAC PK Protein,RAC, Proto-Oncogene Protein,Rac PK alpha Protein,Rac PK beta Protein,Related to A and C Protein,akt Proto Oncogene Protein,alpha Protein, Rac-PK,c akt Proto Oncogene Protein,c-akt, Proto-Oncogene Proteins,c-akt1, Proto-Oncogene Proteins,c-akt2, Proto-Oncogene Proteins,c-akt3, Proto-Oncogene Proteins
D059016 Tumor Microenvironment The milieu surrounding neoplasms consisting of cells, vessels, soluble factors, and molecules, that can influence and be influenced by, the neoplasm's growth. Cancer Microenvironment,Cancer Microenvironments,Microenvironment, Cancer,Microenvironment, Tumor,Microenvironments, Cancer,Microenvironments, Tumor,Tumor Microenvironments

Related Publications

Seung-Kye Cho, and Kijun Lee, and Jeong-Hwa Woo, and Jung-Hye Choi
April 2009, The American journal of pathology,
Seung-Kye Cho, and Kijun Lee, and Jeong-Hwa Woo, and Jung-Hye Choi
September 2013, Biochemical and biophysical research communications,
Seung-Kye Cho, and Kijun Lee, and Jeong-Hwa Woo, and Jung-Hye Choi
September 1995, Clinical & experimental metastasis,
Seung-Kye Cho, and Kijun Lee, and Jeong-Hwa Woo, and Jung-Hye Choi
July 2018, Cancer research,
Seung-Kye Cho, and Kijun Lee, and Jeong-Hwa Woo, and Jung-Hye Choi
May 1995, Cancer letters,
Seung-Kye Cho, and Kijun Lee, and Jeong-Hwa Woo, and Jung-Hye Choi
October 2014, The Journal of clinical investigation,
Seung-Kye Cho, and Kijun Lee, and Jeong-Hwa Woo, and Jung-Hye Choi
January 2017, Molecular cancer research : MCR,
Seung-Kye Cho, and Kijun Lee, and Jeong-Hwa Woo, and Jung-Hye Choi
August 2021, The Journal of clinical investigation,
Seung-Kye Cho, and Kijun Lee, and Jeong-Hwa Woo, and Jung-Hye Choi
September 2015, Oncology reports,
Copied contents to your clipboard!