Astrocytes protect cultured neurons from degeneration induced by anoxia. 1987

S Vibulsreth, and F Hefti, and M D Ginsberg, and W D Dietrich, and R Busto
Department of Neurology, University of Miami School of Medicine, FL 33101.

Neurons grown in cultures of dissociated brain cells degenerate when exposed to anoxia and deprived of glucose. We have developed culture systems in which neurons can be grown in the presence or absence of astrocytes and have used them to study the influence of astrocytes on the neuronal degeneration induced by anoxia and glucopenia. Cultures were prepared from fetal rat forebrains. Mixed cultures contained neurons (identified by immunocytochemical staining of neuron-specific enolase, NSE) and about an equal number of non-neuronal cells (identified by glial fibrillary acid protein). Pure neuronal cultures were prepared by adding a cytostatic compound (cytosine arabinoside) to the medium. Treated cultures were exposed for 4 h to glucose-free medium and an atmosphere of 95% N2 and 5% CO2, whereas control cultures were left in the usual medium containing glucose and in an atmosphere composed of 95% air and 5% CO2. After an interval of 24 h, cultures were fixed, taken for NSE staining, and the number of surviving neurons was counted. Exposure to anoxia and glucopenia reduced the number of surviving neurons in pure neuronal cultures to 5-10% of control levels. In contrast, in mixed cultures 40-60% of the neurons survived these conditions. Anoxia without glucose deprivation reduced the number of surviving neurons in both types of cultures to the same extent as anoxia combined with glucopenia. Glucose deprivation alone was ineffective. The findings suggest a protective influence of astrocytes on neurons under anoxic conditions. gamma-D-Glutamylglycine protected neurons in both types of cultures from anoxia-induced degeneration.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial

Related Publications

S Vibulsreth, and F Hefti, and M D Ginsberg, and W D Dietrich, and R Busto
October 2005, Neurochemical research,
S Vibulsreth, and F Hefti, and M D Ginsberg, and W D Dietrich, and R Busto
January 2012, PloS one,
S Vibulsreth, and F Hefti, and M D Ginsberg, and W D Dietrich, and R Busto
March 1998, Glia,
S Vibulsreth, and F Hefti, and M D Ginsberg, and W D Dietrich, and R Busto
June 2005, Journal of neuroscience research,
S Vibulsreth, and F Hefti, and M D Ginsberg, and W D Dietrich, and R Busto
April 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S Vibulsreth, and F Hefti, and M D Ginsberg, and W D Dietrich, and R Busto
September 2022, iScience,
S Vibulsreth, and F Hefti, and M D Ginsberg, and W D Dietrich, and R Busto
January 2000, Research communications in molecular pathology and pharmacology,
S Vibulsreth, and F Hefti, and M D Ginsberg, and W D Dietrich, and R Busto
May 1992, Brain research,
S Vibulsreth, and F Hefti, and M D Ginsberg, and W D Dietrich, and R Busto
March 1971, Experientia,
S Vibulsreth, and F Hefti, and M D Ginsberg, and W D Dietrich, and R Busto
January 1980, Acta neuropathologica,
Copied contents to your clipboard!