Antimicrobial Natural Products from Plant Pathogenic Fungi. 2023

Melissa M Cadelis, and Steven A Li, and Shara J van de Pas, and Alex Grey, and Daniel Mulholland, and Bevan S Weir, and Brent R Copp, and Siouxsie Wiles
School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.

Isolates of a variety of fungal plant pathogens (Alternaria radicina ICMP 5619, Cercospora beticola ICMP 15907, Dactylonectria macrodidyma ICMP 16789, D. torresensis ICMP 20542, Ilyonectria europaea ICMP 16794, and I. liriodendra ICMP 16795) were screened for antimicrobial activity against the human pathogenic bacteria Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, Mycobacterium abscessus, and M. marinum and were found to have some activity. Investigation of the secondary metabolites of these fungal isolates led to the isolation of ten natural products (1-10) of which one was novel, (E)-4,7-dihydroxyoct-2-enoic acid (1). Structure elucidation of all natural products was achieved by a combination of NMR spectroscopy and mass spectrometry. We also investigated the antimicrobial activity of a number of the isolated natural products. While we did not find (E)-4,7-dihydroxyoct-2-enoic acid (1) to have any activity against the bacteria and fungi in our assays, we did find that cercosporin (7) exhibited potent activity against Methicillin resistant Staphylococcus aureus (MRSA), dehydro-curvularin (6) and radicicol (10) exhibited antimycobacterial activity against M. marinum, and brefeldin A (8) and radicicol (10) exhibited antifungal activity against Candida albicans. Investigation of the cytotoxicity and haemolytic activities of these natural products (6-8 and 10) found that only one of the four active compounds, radicicol (10), was non-cytotoxic and non-haemolytic.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D002176 Candida albicans A unicellular budding fungus which is the principal pathogenic species causing CANDIDIASIS (moniliasis). Candida albicans var. stellatoidea,Candida stellatoidea,Dematium albicans,Monilia albicans,Myceloblastanon albicans,Mycotorula albicans,Parasaccharomyces albicans,Procandida albicans,Procandida stellatoidea,Saccharomyces albicans,Syringospora albicans
D005658 Fungi A kingdom of eukaryotic, heterotrophic organisms that live parasitically as saprobes, including MUSHROOMS; YEASTS; smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi, commonly known as molds, refer to those that grow as multicellular colonies. Fungi, Filamentous,Molds,Filamentous Fungi,Filamentous Fungus,Fungus,Fungus, Filamentous,Mold
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000890 Anti-Infective Agents Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection. Anti-Infective Agent,Anti-Microbial Agent,Antimicrobial Agent,Microbicide,Microbicides,Anti-Microbial Agents,Antiinfective Agents,Antimicrobial Agents,Agent, Anti-Infective,Agent, Anti-Microbial,Agent, Antimicrobial,Agents, Anti-Infective,Agents, Anti-Microbial,Agents, Antiinfective,Agents, Antimicrobial,Anti Infective Agent,Anti Infective Agents,Anti Microbial Agent,Anti Microbial Agents
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001688 Biological Products Complex pharmaceutical substances, preparations, or matter derived from organisms usually obtained by biological methods or assay. Biologic,Biologic Drug,Biologic Product,Biological,Biological Drug,Biological Medicine,Biological Product,Biologics,Biopharmaceutical,Natural Product,Natural Products,Biologic Drugs,Biologic Medicines,Biologic Pharmaceuticals,Biologic Products,Biological Drugs,Biological Medicines,Biologicals,Biopharmaceuticals,Products, Biological,Drug, Biologic,Drug, Biological,Drugs, Biologic,Drugs, Biological,Medicine, Biological,Medicines, Biologic,Medicines, Biological,Pharmaceuticals, Biologic,Product, Biologic,Product, Biological,Product, Natural
D055624 Methicillin-Resistant Staphylococcus aureus A strain of Staphylococcus aureus that is non-susceptible to the action of METHICILLIN. The mechanism of resistance usually involves modification of normal or the presence of acquired PENICILLIN BINDING PROTEINS. MRSA,Methicillin Resistant Staphylococcus aureus

Related Publications

Melissa M Cadelis, and Steven A Li, and Shara J van de Pas, and Alex Grey, and Daniel Mulholland, and Bevan S Weir, and Brent R Copp, and Siouxsie Wiles
August 2023, Applied microbiology and biotechnology,
Melissa M Cadelis, and Steven A Li, and Shara J van de Pas, and Alex Grey, and Daniel Mulholland, and Bevan S Weir, and Brent R Copp, and Siouxsie Wiles
February 2023, Molecules (Basel, Switzerland),
Melissa M Cadelis, and Steven A Li, and Shara J van de Pas, and Alex Grey, and Daniel Mulholland, and Bevan S Weir, and Brent R Copp, and Siouxsie Wiles
September 2022, Saudi journal of biological sciences,
Melissa M Cadelis, and Steven A Li, and Shara J van de Pas, and Alex Grey, and Daniel Mulholland, and Bevan S Weir, and Brent R Copp, and Siouxsie Wiles
April 2020, Marine drugs,
Melissa M Cadelis, and Steven A Li, and Shara J van de Pas, and Alex Grey, and Daniel Mulholland, and Bevan S Weir, and Brent R Copp, and Siouxsie Wiles
January 2017, Microbiology spectrum,
Melissa M Cadelis, and Steven A Li, and Shara J van de Pas, and Alex Grey, and Daniel Mulholland, and Bevan S Weir, and Brent R Copp, and Siouxsie Wiles
November 2009, Natural product communications,
Melissa M Cadelis, and Steven A Li, and Shara J van de Pas, and Alex Grey, and Daniel Mulholland, and Bevan S Weir, and Brent R Copp, and Siouxsie Wiles
June 2018, Marine drugs,
Melissa M Cadelis, and Steven A Li, and Shara J van de Pas, and Alex Grey, and Daniel Mulholland, and Bevan S Weir, and Brent R Copp, and Siouxsie Wiles
January 1967, Journal of the Iowa Medical Society,
Melissa M Cadelis, and Steven A Li, and Shara J van de Pas, and Alex Grey, and Daniel Mulholland, and Bevan S Weir, and Brent R Copp, and Siouxsie Wiles
January 2009, Annual review of phytopathology,
Melissa M Cadelis, and Steven A Li, and Shara J van de Pas, and Alex Grey, and Daniel Mulholland, and Bevan S Weir, and Brent R Copp, and Siouxsie Wiles
January 2010, Journal of biomedicine & biotechnology,
Copied contents to your clipboard!