Enhancement of mitochondrial oxidative phosphorylation capability by hypoperfusion in isolated perfused rat heart. 1987

P C Pelikan, and J T Niemann, and G Z Xia, and G Jagels, and J M Criley
Department of Medicine, Harbor-UCLA Medical Center, Torrance 90509.

To define alterations in myocardial mitochondrial function due to hypoperfusion, oxidative phosphorylation was simultaneously studied in 17 control (stable perfusion pressure) rat hearts and 17 hypoperfused isolated rat hearts. Hypoperfusion for 30 minutes was achieved by a reduction in coronary perfusion pressure from 77.8 +/- 1.2 mm Hg (mean +/- SEM) to 20.2 +/- 1.8 mm Hg in the experimental group (control perfusion pressure after 30 minutes 75.6 +/- 1.2). Hypoperfusion caused a reduction in left ventricular developed pressure to 20.5 +/- 1.5 mm Hg (versus control 74.8 +/- 3.3, p less than 0.0001), a reduction of coronary flow rate to 4.9 +/- 0.3 ml/min (versus control 19.4 +/- 1.2, p less than 0.0001), and a drop in myocardial oxygen consumption to 0.06 +/- 0.005 ml O2/min (versus control 0.17 +/- 0.01, p less than 0.0001). Myocardial lactate production was increased by hypoperfusion (3.0 +/- 0.6 mumol/min) compared with controls (0.7 +/- 0.5, p less than 0.02), but myocardial creatine kinase release was similar in the hypoperfused and control groups. Hypoperfusion was associated with an augmentation of state 3 mitochondrial respiration with glutamate and malate as respiratory substrates (448.8 +/- 14.0 ng atoms O/min/mg mitochondrial protein versus controls 290.7 +/- 13.4, p less than 0.001). When rates were normalized for mitochondrial malate dehydrogenase (MDHm), state 3 respiration was still increased in hypoperfused hearts (24.1 +/- 2.1 ng atoms O/min/IU MDHm) compared with controls (15.5 +/- 1.6, p less than 0.02). The rates of dinitrophenol-uncoupled electron transport were similar to the rates of state 3 respiration in both the hypoperfused and control groups.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D008297 Male Males
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat

Related Publications

P C Pelikan, and J T Niemann, and G Z Xia, and G Jagels, and J M Criley
December 1972, Biochimica et biophysica acta,
P C Pelikan, and J T Niemann, and G Z Xia, and G Jagels, and J M Criley
January 1991, Advances in experimental medicine and biology,
P C Pelikan, and J T Niemann, and G Z Xia, and G Jagels, and J M Criley
January 1969, Journal of atherosclerosis research,
P C Pelikan, and J T Niemann, and G Z Xia, and G Jagels, and J M Criley
April 2007, Antimicrobial agents and chemotherapy,
P C Pelikan, and J T Niemann, and G Z Xia, and G Jagels, and J M Criley
February 2018, Nan fang yi ke da xue xue bao = Journal of Southern Medical University,
P C Pelikan, and J T Niemann, and G Z Xia, and G Jagels, and J M Criley
October 1984, The American journal of physiology,
P C Pelikan, and J T Niemann, and G Z Xia, and G Jagels, and J M Criley
January 1975, Recent advances in studies on cardiac structure and metabolism,
P C Pelikan, and J T Niemann, and G Z Xia, and G Jagels, and J M Criley
December 1991, The American journal of physiology,
P C Pelikan, and J T Niemann, and G Z Xia, and G Jagels, and J M Criley
September 1990, The American journal of physiology,
P C Pelikan, and J T Niemann, and G Z Xia, and G Jagels, and J M Criley
January 1974, Molecular pharmacology,
Copied contents to your clipboard!