Prediction of complex atrioventricular conduction rhythms in humans with use of the atrioventricular nodal recovery curve. 1987

A Shrier, and H Dubarsky, and M Rosengarten, and M R Guevara, and S Nattel, and L Glass
Department of Physiology, McGill University, Montreal, Quebec, Canada.

Theoretical considerations indicate that complex patterns of atrioventricular conduction produced by rapid atrial stimulation can be predicted from changes in atrioventricular conduction produced by premature stimulation of the atrium. The purpose of this study was to evaluate the validity of this theoretical approach in seven patients undergoing electrophysiologic investigation. The atrioventricular nodal recovery curve was determined at two different basic cycle lengths. Subsequently, periodic atrial stimulation was delivered for 30 sec periods over a range of frequencies giving 11, Wenckebach, reverse Wenckebach, and 21 rhythms. The recovery curve data was then used to compute the response to periodic stimulation by an iterative technique. The conduction patterns actually seen during periodic atrial stimulation showed close agreement with the computed patterns. This work thus provides a unified explanation for the appearance of Wenckebach, reverse Wenckebach, alternating Wenckebach, and high grade block rhythms.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002304 Cardiac Pacing, Artificial Regulation of the rate of contraction of the heart muscles by an artificial pacemaker. Pacing, Cardiac, Artificial,Artificial Cardiac Pacing,Artificial Cardiac Pacings,Cardiac Pacings, Artificial,Pacing, Artificial Cardiac,Pacings, Artificial Cardiac
D004562 Electrocardiography Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY. 12-Lead ECG,12-Lead EKG,12-Lead Electrocardiography,Cardiography,ECG,EKG,Electrocardiogram,Electrocardiograph,12 Lead ECG,12 Lead EKG,12 Lead Electrocardiography,12-Lead ECGs,12-Lead EKGs,12-Lead Electrocardiographies,Cardiographies,ECG, 12-Lead,EKG, 12-Lead,Electrocardiograms,Electrocardiographies, 12-Lead,Electrocardiographs,Electrocardiography, 12-Lead
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006325 Heart Atria The chambers of the heart, to which the BLOOD returns from the circulation. Heart Atrium,Left Atrium,Right Atrium,Atria, Heart,Atrium, Heart,Atrium, Left,Atrium, Right
D006327 Heart Block Impaired conduction of cardiac impulse that can occur anywhere along the conduction pathway, such as between the SINOATRIAL NODE and the right atrium (SA block) or between atria and ventricles (AV block). Heart blocks can be classified by the duration, frequency, or completeness of conduction block. Reversibility depends on the degree of structural or functional defects. Auriculo-Ventricular Dissociation,A-V Dissociation,Atrioventricular Dissociation,A V Dissociation,A-V Dissociations,Atrioventricular Dissociations,Auriculo Ventricular Dissociation,Auriculo-Ventricular Dissociations,Block, Heart,Blocks, Heart,Dissociation, A-V,Dissociation, Atrioventricular,Dissociation, Auriculo-Ventricular,Dissociations, A-V,Dissociations, Atrioventricular,Dissociations, Auriculo-Ventricular,Heart Blocks
D006328 Cardiac Catheterization Procedures in which placement of CARDIAC CATHETERS is performed for therapeutic or diagnostic procedures. Catheterization, Cardiac,Catheterization, Heart,Heart Catheterization,Cardiac Catheterizations,Catheterizations, Cardiac,Catheterizations, Heart,Heart Catheterizations
D006329 Heart Conduction System An impulse-conducting system composed of modified cardiac muscle, having the power of spontaneous rhythmicity and conduction more highly developed than the rest of the heart. Conduction System, Heart,Conduction Systems, Heart,Heart Conduction Systems,System, Heart Conduction,Systems, Heart Conduction
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001283 Atrioventricular Node A small nodular mass of specialized muscle fibers located in the interatrial septum near the opening of the coronary sinus. It gives rise to the atrioventricular bundle of the conduction system of the heart. AV Node,A-V Node,Atrio-Ventricular Node,A V Node,A-V Nodes,AV Nodes,Atrio Ventricular Node,Atrio-Ventricular Nodes,Atrioventricular Nodes,Node, A-V,Node, AV,Node, Atrio-Ventricular,Node, Atrioventricular,Nodes, A-V,Nodes, AV,Nodes, Atrio-Ventricular,Nodes, Atrioventricular

Related Publications

A Shrier, and H Dubarsky, and M Rosengarten, and M R Guevara, and S Nattel, and L Glass
June 1998, Circulation,
A Shrier, and H Dubarsky, and M Rosengarten, and M R Guevara, and S Nattel, and L Glass
February 1999, Circulation,
A Shrier, and H Dubarsky, and M Rosengarten, and M R Guevara, and S Nattel, and L Glass
June 2018, Cardiac electrophysiology clinics,
A Shrier, and H Dubarsky, and M Rosengarten, and M R Guevara, and S Nattel, and L Glass
January 1996, Ryoikibetsu shokogun shirizu,
A Shrier, and H Dubarsky, and M Rosengarten, and M R Guevara, and S Nattel, and L Glass
April 1982, Chest,
A Shrier, and H Dubarsky, and M Rosengarten, and M R Guevara, and S Nattel, and L Glass
October 1972, British heart journal,
A Shrier, and H Dubarsky, and M Rosengarten, and M R Guevara, and S Nattel, and L Glass
October 2009, Heart rhythm,
A Shrier, and H Dubarsky, and M Rosengarten, and M R Guevara, and S Nattel, and L Glass
September 1983, Journal of the American College of Cardiology,
A Shrier, and H Dubarsky, and M Rosengarten, and M R Guevara, and S Nattel, and L Glass
March 1993, Pacing and clinical electrophysiology : PACE,
Copied contents to your clipboard!