Relationship of glycolytic intermediates, glycolytic enzymes, and ammonia to glycogen metabolism during sporulation in the yeast Saccharomyces cerevisiae. 1979

W A Fonzi, and M Shanley, and D J Opheim

To identify the factors which control glycogen synthesis in Saccharomyces cerevisiae, we have studied the regulation of glycogen metabolism during sporulation, since in vivo glycogen has been reported to undergo significant changes in concentration during this process. We examined the concentration of a number of key glycolytic intermediates and enzymes in strains that sporulate at different rates and those that are deficient in sporulation. There were no significant changes found in the adenylate energy charge or cyclic AMP levels throughout sporulation. Although significant alterations occurred in the levels of glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate, phosphoenolpyruvate, and ATP during sporulation, only the fourfold increase in fructose-1,6-bisphosphate appeared to correlate with glycogen synthesis in all of the strains examined. Only limited changes occurred in the level of a number of glycolytic and gluconeogenic enzymes which were examined during this process. Intracellular glucose content underwent a dramatic 30- to 40-fold increase in sporulating cells. Comparison of strains with different rates of sporulation demonstrated that this increase in glucose content coincides with the time of glycogen degradation in each strain. Both the increase in glucose content and the degradation of accumulated glycogen were not observed in nonsporulating alpha/alpha strains, or in cells incubated in NH(4) (+) supplemented sporulation medium. Although glucose appears to be the direct product of glycogen degradation, a 10-fold increase in a nonspecific alkaline phosphatase occurs at this time, which may be degrading phosphorylated sugars to glucose. All of the strains examined released extracellular glucose while suspended in acetate sporulation medium. It is concluded that most of the changes in the glycolytic pathway that occur during sporulation, with the exception of glycogen degradation and the concomitant increase in intracellular glucose pools, are a response to the transfer to sporulation medium and are independent of sporulation-specific processes. Inhibition of sporulation with ammonium ions resulted in a different pattern of change in all of the glycolytic intermediates examined, including a twofold increase in cyclic AMP levels. Ammonia did not interfere with glycogen synthesis, but prevented sporulation-specific glycogen degradation. The levels of the glycolytic enzymes examined were not affected by ammonia.

UI MeSH Term Description Entries
D010728 Phosphoenolpyruvate A monocarboxylic acid anion derived from selective deprotonation of the carboxy group of phosphoenolpyruvic acid. It is a metabolic intermediate in GLYCOLYSIS; GLUCONEOGENESIS; and other pathways.
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006003 Glycogen
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D006600 Hexosephosphates
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000645 Ammonium Sulfate Sulfuric acid diammonium salt. It is used in CHEMICAL FRACTIONATION of proteins. Sulfate, Ammonium
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013172 Spores, Fungal Reproductive bodies produced by fungi. Conidia,Fungal Spores,Conidium,Fungal Spore,Spore, Fungal

Related Publications

W A Fonzi, and M Shanley, and D J Opheim
January 1980, Molecular & general genetics : MGG,
W A Fonzi, and M Shanley, and D J Opheim
December 1993, Biochemistry and molecular biology international,
W A Fonzi, and M Shanley, and D J Opheim
June 2000, Enzyme and microbial technology,
W A Fonzi, and M Shanley, and D J Opheim
November 1995, Canadian journal of microbiology,
W A Fonzi, and M Shanley, and D J Opheim
January 1970, Annual review of biochemistry,
W A Fonzi, and M Shanley, and D J Opheim
November 2011, Genetics,
W A Fonzi, and M Shanley, and D J Opheim
January 1973, Zeitschrift fur allgemeine Mikrobiologie,
W A Fonzi, and M Shanley, and D J Opheim
January 2010, Acta biochimica Polonica,
W A Fonzi, and M Shanley, and D J Opheim
July 1974, Journal of general microbiology,
W A Fonzi, and M Shanley, and D J Opheim
May 1983, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!