Structural studies and isolation of cDNA clones providing the complete sequence of rat liver dihydropteridine reductase. 1987

M Shahbaz, and J A Hoch, and K A Trach, and J A Hural, and S Webber, and J M Whiteley
Department of Basic and Clinical Research, Scripps Clinic and Research Foundation, La Jolla, California 92037.

The cleavage of reductively alkylated rat liver dihydropteridine reductase with cyanogen bromide afforded a mixture of peptides, six of which (CB-1 to CB-6) were isolated and purified by C8 reverse-phase high performance liquid chromatography. Portions of peptides CB-1, CB-4, and CB-6 were sequenced by automated Edman degradation and high performance liquid chromatography and the carboxyl-terminal region by conventional procedures. Further proteolytic digestion of CB-6 and isolation of the products afforded a seven-amino acid peptide. A low degeneracy probe comprising 20 nucleotides was synthesized from the sequence of this peptide and was used to screen a rat liver cDNA expression library constructed in the vector lambda gt 10. Positive clones were isolated, and detailed examination of five of these by restriction endonucleases and dideoxy sequence analyses allowed identification of the entire coding region for dihydropteridine reductase. The gene was found to code for a protein of 240 amino acids (excluding the methionine initiator) of Mr = 25,420. Each of the sequences corresponding to the peptides CB-1, CB-4, CB-6, and the carboxyl terminus were identified in the deduced protein sequence. The rat enzyme is highly homologous to the human dihydropteridine reductase; the two proteins differ in only 10 amino acids, and all are conservative substitutions. In contrast, the sequence shows little homology with that of mammalian dihydrofolate reductase: reduced pyridine nucleotide-requiring enzymes with superficial mechanistic similarities.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004093 Dihydropteridine Reductase An enzyme that catalyzes the reduction of 6,7-dihydropteridine to 5,6,7,8-tetrahydropteridine in the presence of NADP+. Defects in the enzyme are a cause of PHENYLKETONURIA II. Formerly listed as EC 1.6.99.7. 6,7-Dihydropteridine Reductase,6,7 Dihydropteridine Reductase,Reductase, 6,7-Dihydropteridine,Reductase, Dihydropteridine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

M Shahbaz, and J A Hoch, and K A Trach, and J A Hural, and S Webber, and J M Whiteley
April 1988, Molecular & general genetics : MGG,
M Shahbaz, and J A Hoch, and K A Trach, and J A Hural, and S Webber, and J M Whiteley
October 1980, Biochemical Society transactions,
M Shahbaz, and J A Hoch, and K A Trach, and J A Hural, and S Webber, and J M Whiteley
March 1987, Biochemical and biophysical research communications,
M Shahbaz, and J A Hoch, and K A Trach, and J A Hural, and S Webber, and J M Whiteley
October 1989, The Journal of biological chemistry,
M Shahbaz, and J A Hoch, and K A Trach, and J A Hural, and S Webber, and J M Whiteley
July 1981, The Biochemical journal,
M Shahbaz, and J A Hoch, and K A Trach, and J A Hural, and S Webber, and J M Whiteley
August 1990, Proceedings of the National Academy of Sciences of the United States of America,
M Shahbaz, and J A Hoch, and K A Trach, and J A Hural, and S Webber, and J M Whiteley
October 1972, The Journal of biological chemistry,
M Shahbaz, and J A Hoch, and K A Trach, and J A Hural, and S Webber, and J M Whiteley
July 1992, Proceedings of the National Academy of Sciences of the United States of America,
M Shahbaz, and J A Hoch, and K A Trach, and J A Hural, and S Webber, and J M Whiteley
October 1989, Current eye research,
M Shahbaz, and J A Hoch, and K A Trach, and J A Hural, and S Webber, and J M Whiteley
January 1987, Free radical research communications,
Copied contents to your clipboard!