Effect of vitamin B6 on the synthesis and degradation of aspartate aminotransferase in chicken embryo fibroblasts. 1987

C P Sharma, and H Gehring
Biochemisches Institut der Universität Zürich, Switzerland.

The effect of pyridoxal depletion and supplementation on the intracellular level of mitochondrial and cytosolic aspartate aminotransferase in cultured chicken embryo fibroblasts was examined. No apoenzyme was detected in cells grown in the presence of pyridoxal, and the specific activity of total enzyme did not vary profoundly from primary to quaternary cultures. Under pyridoxal depletion, up to 40% apoenzyme was found in tertiary cultures which was entirely due to the mitochondrial isoenzyme. Cytosolic apoenzyme was never detected. Total aspartate aminotransferase relative to total protein was increased 2-fold in secondary cultures; only the mitochondrial isoenzyme contributed to the increased specific activity. The cytosolic isoenzyme decreased steadily and was below the limit of detection in quaternary cultures. The changes are attributed to an increased and decreased synthesis of mitochondrial and cytosolic isoenzyme, respectively. No induction of either isoenzyme was observed after incubating the cells with different hormones and substrates. In secondary cultures, no degradation of mitochondrial isoenzyme could be detected under pyridoxal deficiency or supplementation during 4.4 days, an interpassage duration. The cytosolic aspartate aminotransferase was degraded initially with an apparent half-life of approximately 0.9 day under both sets of conditions. The pronounced stability of mitochondrial aspartate aminotransferase, even though one-third of it was present as apoenzyme, excludes the formation of the apoform to be the rate-limiting step in its degradation. The present results show that pyridoxal affects the synthesis of mitochondrial and cytosolic aspartate aminotransferase, but differently.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D011730 Pyridoxal The 4-carboxyaldehyde form of VITAMIN B 6 which is converted to PYRIDOXAL PHOSPHATE which is a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid.
D011736 Pyridoxine The 4-methanol form of VITAMIN B 6 which is converted to PYRIDOXAL PHOSPHATE which is a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. Although pyridoxine and Vitamin B 6 are still frequently used as synonyms, especially by medical researchers, this practice is erroneous and sometimes misleading (EE Snell; Ann NY Acad Sci, vol 585 pg 1, 1990). Pyridoxin,Pyridoxine Hydrochloride,Pyridoxol,Pyridoxol Hydrochloride,Rodex
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001219 Aspartate Aminotransferases Enzymes of the transferase class that catalyze the conversion of L-aspartate and 2-ketoglutarate to oxaloacetate and L-glutamate. EC 2.6.1.1. Aspartate Aminotransferase,Aspartate Transaminase,Glutamic-Oxaloacetic Transaminase,SGOT,Aspartate Apoaminotransferase,Glutamate-Aspartate Transaminase,L-Aspartate-2-Oxoglutarate Aminotransferase,Serum Glutamic-Oxaloacetic Transaminase,Aminotransferase, Aspartate,Aminotransferase, L-Aspartate-2-Oxoglutarate,Aminotransferases, Aspartate,Apoaminotransferase, Aspartate,Glutamate Aspartate Transaminase,Glutamic Oxaloacetic Transaminase,Glutamic-Oxaloacetic Transaminase, Serum,L Aspartate 2 Oxoglutarate Aminotransferase,Serum Glutamic Oxaloacetic Transaminase,Transaminase, Aspartate,Transaminase, Glutamate-Aspartate,Transaminase, Glutamic-Oxaloacetic,Transaminase, Serum Glutamic-Oxaloacetic

Related Publications

C P Sharma, and H Gehring
March 1988, The Journal of biological chemistry,
C P Sharma, and H Gehring
September 1967, Nagoya journal of medical science,
C P Sharma, and H Gehring
March 1978, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde,
C P Sharma, and H Gehring
October 1975, Differentiation; research in biological diversity,
C P Sharma, and H Gehring
January 1991, Annals of nutrition & metabolism,
C P Sharma, and H Gehring
December 1989, Journal of nutritional science and vitaminology,
C P Sharma, and H Gehring
September 1977, Cancer research,
C P Sharma, and H Gehring
October 1953, The Journal of biological chemistry,
Copied contents to your clipboard!