Interstitial laser photochemotherapy of rhodamine-123-sensitized rat glioma. 1987

S K Powers, and W C Beckman, and J T Brown, and L C Kolpack
Department of Surgery, University of North Carolina School of Medicine, Chapel Hill.

The effect of interstitial laser photochemotherapy with the mitochondrial-specific intravital dye rhodamine-123 (Rh-123) was studied using a malignant rat glioma model system (RT2). Tumors were transplanted subcutaneously into the flank of athymic mice and into the cerebrum of adult rats. The Rh-123 photosensitization was produced by direct intratumoral injection of Rh-123 into the mouse RT2 flank tumors and by intravenous Rh-123 administration to adult rats with implanted RT2 intracerebral tumors. Intratumoral irradiation with 150 mW of argon laser light for an exposure time of 15 minutes was performed using a conical sapphire-tipped quartz optical fiber. Control groups of animals received either no treatment, Rh-123 injections, or administration of 150 mW of argon laser light for 15 minutes. Both flank and intracerebral tumors showed progressive diminution in size after treatment with Rh-123 photochemotherapy. There was no evidence of tumor recurrence in 60% of Rh-123 photochemotherapy-treated tumors. Recurrences in tumors treated with Rh-123 photochemotherapy usually appeared at the periphery of the original tumor at 10 days after treatment. Histologically, photochemotherapy-treated intracerebral tumors showed progressive shrinkage with increasing tumor necrosis over time. The finding of residual or recurrent tumor at the periphery of the original tumor mass suggests that the lack of penetration of the blue-green (argon) light was responsible for preventing complete tumor ablation. Our results suggest that Rh-123 photochemotherapy can destroy malignant gliomas in vivo; however, the poor penetrability of the photoactivating blue-green light may limit the effectiveness of this treatment for large or extensively invasive tumors.

UI MeSH Term Description Entries
D007866 Leg The inferior part of the lower extremity between the KNEE and the ANKLE. Legs
D009135 Muscular Diseases Acquired, familial, and congenital disorders of SKELETAL MUSCLE and SMOOTH MUSCLE. Muscle Disorders,Myopathies,Myopathic Conditions,Muscle Disorder,Muscular Disease,Myopathic Condition,Myopathy
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D010778 Photochemotherapy Therapy using oral or topical photosensitizing agents with subsequent exposure to light. Blue Light Photodynamic Therapy,Photodynamic Therapy,Red Light PDT,Red Light Photodynamic Therapy,Therapy, Photodynamic,Light PDT, Red,PDT, Red Light,Photochemotherapies,Photodynamic Therapies,Therapies, Photodynamic
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D012235 Rhodamines A family of 3,6-di(substituted-amino)-9-benzoate derivatives of xanthene that are used as dyes and as indicators for various metals; also used as fluorescent tracers in histochemistry. Rhodamine

Related Publications

S K Powers, and W C Beckman, and J T Brown, and L C Kolpack
June 1986, Journal of neurosurgery,
S K Powers, and W C Beckman, and J T Brown, and L C Kolpack
December 1988, Journal of neuro-oncology,
S K Powers, and W C Beckman, and J T Brown, and L C Kolpack
April 1987, Biochemical and biophysical research communications,
S K Powers, and W C Beckman, and J T Brown, and L C Kolpack
January 1990, Cancer chemotherapy and pharmacology,
S K Powers, and W C Beckman, and J T Brown, and L C Kolpack
September 1999, Changgeng yi xue za zhi,
S K Powers, and W C Beckman, and J T Brown, and L C Kolpack
April 1988, The Laryngoscope,
S K Powers, and W C Beckman, and J T Brown, and L C Kolpack
October 2008, Xenobiotica; the fate of foreign compounds in biological systems,
S K Powers, and W C Beckman, and J T Brown, and L C Kolpack
August 1994, The Laryngoscope,
S K Powers, and W C Beckman, and J T Brown, and L C Kolpack
January 1988, American journal of otolaryngology,
S K Powers, and W C Beckman, and J T Brown, and L C Kolpack
January 1993, Lasers in surgery and medicine,
Copied contents to your clipboard!