Activation patterns of embryonic chick lumbosacral motoneurones following large spinal cord reversals. 1987

M W Vogel
Department of Biology, Yale University, New Haven, CT 06511.

1. Embryonic chick motoneurones were caused to innervate inappropriate hindlimb muscles by rotating the presumptive lumbosacral region of the neural tube in stage 15-16 embryos which is prior to the outgrowth of motoneurone axons. 2. The activation patterns of motoneurones in control and spinal cord reversal embryos were analysed from electromyographic (e.m.g.) recordings of stage 36 limb muscles during evoked movement sequences in an isolated spinal cord-limb preparation. Histograms representing the frequency of activation were constructed for each muscle. The muscle's pattern of activation was classified as flexor-like or extensor-like and compared to the activation patterns of control muscles. 3. A series of control operations was performed in which the prospective lumbosacral region of the neural tube was removed and replaced in its original orientation. Muscles in these embryos were innervated by their normal motoneurone pools and they were activated normally, indicating that the neural tube operation per se does not alter the activation pattern of motoneurones. Furthermore, some muscles (twelve out of sixty-one) in spinal cord reversal embryos had normal activation patterns and appeared to be innervated by their original motoneurones. Based on these results and the result of a previous study (Landmesser & O'Donovan, 1984 b), it is concluded that motoneurones in reversed spinal cords are activated in a manner appropriate for their original identity. 4. The majority of muscles (thirty-three out of sixty-one) in large spinal cord reversal embryos were activated during an appropriate phase of the kicking cycle. Of the remaining muscles, 16% were activated inappropriately (i.e. extensor muscles were activated as flexors, and vice versa), and 30% had a novel 'mixed' flexor- and extensor-like activation pattern. However, the activation pattern of most muscles differed markedly from that of any other control muscles regardless of whether the muscle was activated appropriately or inappropriately as a flexor or extensor. The abnormal activation patterns are a likely consequence of the diffuse distribution of inappropriate motoneurones projecting to foreign muscles in embryos with large spinal cord reversals. Since it is likely that motoneurones are still activated according to their original identity, the activation patterns of individual foreign motor units projecting to a muscle sum in e.m.g. recordings to produce a novel abnormal activation pattern.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

M W Vogel
December 1991, Annals of neurology,
Copied contents to your clipboard!