A complex array of sequences enhances ribosomal transcription in Xenopus laevis. 1987

R F De Winter, and T Moss
Biophysics Laboratories, Portsmouth Polytechnic, U.K.

The ribosomal DNA spacer in Xenopus laevis was shown in previous studies to be involved in regulating the expression of the ribosomal genes. Here transcription enhancement by this spacer has been studied in some detail, to fully identify the sequences involved and to determine their relative importance in this phenomenon. It is shown that the 60/81 base-pair (bp) repeats, which were reported to be enhancer elements, act as part of a mode of enhancement whose effect is amplified by the spacer promoters or Bam islands. The "Bam super repeat", a combination of spacer promoter and 60/81 bp elements, is the major enhancer unit. Within a Bam super repeat, a near linear correlation between the number of 60/81 bp elements and enhancer activity is observed. Thus, there is no significant co-operativity in the binding of transcription factors to an array of these elements. Multiple Bam super repeats do not act additively and may actually interfere with each others action. Surprisingly this effect is observed both in the presence and absence of active spacer promoters. Sequences between the 3' end of the 28 S coding region and the first spacer promoter may also be involved in enhancement but only in a very minor fashion. In confirmation of recent studies, the presence of the unique ribosomal termination sequence, 213 bp upstream from the pre-rRNA initiation site, is essential for efficient promotion, as deletion of this sequence virtually abolishes pre-rRNA- transcription. These data are discussed in terms of the possible mechanisms of transcription enhancement.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D004742 Enhancer Elements, Genetic Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter. Enhancer Elements,Enhancer Sequences,Element, Enhancer,Element, Genetic Enhancer,Elements, Enhancer,Elements, Genetic Enhancer,Enhancer Element,Enhancer Element, Genetic,Enhancer Sequence,Genetic Enhancer Element,Genetic Enhancer Elements,Sequence, Enhancer,Sequences, Enhancer
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012322 RNA Precursors RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production. Precursor RNA,Primary RNA Transcript,RNA, Messenger, Precursors,RNA, Ribosomal, Precursors,RNA, Small Nuclear, Precursors,RNA, Transfer, Precursors,Pre-mRNA,Pre-rRNA,Pre-snRNA,Pre-tRNA,Primary Transcript, RNA,RNA Precursor,mRNA Precursor,rRNA Precursor,snRNA Precursor,tRNA Precursor,Pre mRNA,Pre rRNA,Pre snRNA,Pre tRNA,Precursor, RNA,Precursor, mRNA,Precursor, rRNA,Precursor, snRNA,Precursor, tRNA,Precursors, RNA,RNA Primary Transcript,RNA Transcript, Primary,RNA, Precursor,Transcript, Primary RNA,Transcript, RNA Primary
D013728 Terminator Regions, Genetic DNA sequences recognized as signals to end GENETIC TRANSCRIPTION. Terminator Sequence,Transcriptional Terminator Regions,Terminator Regions,Genetic Terminator Region,Genetic Terminator Regions,Region, Genetic Terminator,Region, Terminator,Region, Transcriptional Terminator,Regions, Genetic Terminator,Regions, Terminator,Regions, Transcriptional Terminator,Sequence, Terminator,Sequences, Terminator,Terminator Region,Terminator Region, Genetic,Terminator Region, Transcriptional,Terminator Regions, Transcriptional,Terminator Sequences,Transcriptional Terminator Region
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

R F De Winter, and T Moss
February 1980, Nucleic acids research,
R F De Winter, and T Moss
November 1983, Proceedings of the National Academy of Sciences of the United States of America,
R F De Winter, and T Moss
April 1987, Nucleic acids research,
R F De Winter, and T Moss
December 1977, Proceedings of the National Academy of Sciences of the United States of America,
R F De Winter, and T Moss
June 1978, European journal of biochemistry,
R F De Winter, and T Moss
June 1988, Proceedings of the National Academy of Sciences of the United States of America,
R F De Winter, and T Moss
January 1982, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!