Mesodermal metamerism in the teleost, Oryzias latipes (the medaka). 1987

M Q Martindale, and S Meier, and A G Jacobson
Department of Zoology, University of Texas, Austin 78712.

Previous studies of the metameric pattern in mesodermal tissues of chick, mouse, turtle, and amphibian embryos have indicated that segmental characteristics exist along the entire length of the embryo. This paper describes this phenomenon in a fish embryo, for some differences in the cranial segmental plan exist between the anamniote and the amniote embryos hitherto studied. Embryos of the cyprinodont, Oryzias latipes, were fixed at various times, the examined by means of stereo scanning electron microscopy. As in other vertebrate embryos, the first indication of mesodermal metamerism in this fish embryo is the occurrence of somitomeres, which are orderly, tandemly arranged units of uncondensed mesenchymal cells in the paraxial mesoderm. As many as ten somitomeres can be observed caudal to the last formed somite to the elongating tail region. In addition, 7 somitomeres are present rostral to the first definitive somite, which is segment number eight. As in other vertebrate embryos examined, somitomeres in Oryzias embryos are circular, bilaminar arrays of paraxial mesoderm that form before any indications of segmentation can be seen with the light microscope. In the trunk region these mesodermal units condense to give rise to definitive somites, but in the head they eventually disperse. Despite a fundamentally different mode of gastrulation and a relatively small number of cells in the newly formed somitomeres, cranial segmentation in Oryzias embryos was found to be more similar in number to the metameric pattern of the embryos of the bird, reptile, and mammal than to the situation found in the two amphibians studied thus far.

UI MeSH Term Description Entries
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D003530 Cyprinidae A family of freshwater fish comprising the minnows or CARPS. Barbels,Chub,Dace,Minnows,Roach (Fish),Shiner,Tench,Tinca,Barbus,Rutilus rutilus,Tinca tinca,Chubs,Shiners,Tinca tincas,tinca, Tinca
D006257 Head The upper part of the human body, or the front or upper part of the body of an animal, typically separated from the rest of the body by a neck, and containing the brain, mouth, and sense organs. Heads
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Q Martindale, and S Meier, and A G Jacobson
January 2005, Annual review of genetics,
M Q Martindale, and S Meier, and A G Jacobson
July 2008, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M Q Martindale, and S Meier, and A G Jacobson
January 1973, Jikken dobutsu. Experimental animals,
M Q Martindale, and S Meier, and A G Jacobson
April 2011, International journal of biological sciences,
M Q Martindale, and S Meier, and A G Jacobson
March 2007, Marine environmental research,
M Q Martindale, and S Meier, and A G Jacobson
April 2015, Genetics,
M Q Martindale, and S Meier, and A G Jacobson
October 2022, Investigative ophthalmology & visual science,
M Q Martindale, and S Meier, and A G Jacobson
December 2012, BMC developmental biology,
M Q Martindale, and S Meier, and A G Jacobson
August 2009, Genesis (New York, N.Y. : 2000),
M Q Martindale, and S Meier, and A G Jacobson
January 2009, Biology of reproduction,
Copied contents to your clipboard!