The muscarinic antagonists aprophen and benactyzine are noncompetitive inhibitors of the nicotinic acetylcholine receptor. 1987

G Amitai, and J M Herz, and R Bruckstein, and S Luz-Chapman
Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona.

Certain muscarinic antagonists (e.g., atropine, aprophen, and benactyzine) are used as antidotes for the treatment of organophosphate poisoning. We have studied the interaction of aprophen and benactyzine, both aromatic esters of diethylaminoethanol, with nicotinic acetylcholine receptor (AChR) in BC3H-1 intact muscle cells and with receptor-enriched membranes of Torpedo californica. Aprophen and benactyzine diminish the maximal carbamylcholine-elicited sodium influx into muscle cells without shifting Kact (carbamylcholine concentration eliciting 50% of the maximal 22Na+ influx). The concentration dependence for the inhibition of the initial rate of 22Na+ influx by aprophen and benactyzine occurs at lower concentrations (Kant = 3 and 50 microM, respectively) than those needed to inhibit the initial rate of [125I]-alpha-bungarotoxin binding to the agonist/antagonist sites of the AChR (Kp = 83 and 800 microM, respectively). The effective concentration for atropine inhibition of AChR response (Kant = 150 microM in BC3H-1 cells) is significantly higher than those obtained for aprophen and benactyzine. Both aprophen and benactyzine interact with the AChR in its desensitized state in BC3H-1 cells without further enhancing agonist affinity. Furthermore, these ligands do not alter the value of Kdes (equilibrium concentration of agonist which diminishes 50% of the maximal receptor response) in BC3H-1 muscle cells. The affinity of aprophen and benactyzine for the allosterically coupled noncompetitive inhibitor site of the AChR in Torpedo was determined using [3H]phencyclidine as a probe. Both compounds were found to preferentially associate with the high affinity (desensitized) state rather than the resting state of Torpedo AChR. There is a 14- to 23-fold increase in the affinity of aprophen and benactyzine for the AChR (KD = 0.7 and 28.0 microM in the desensitized state compared to 16.4 and 384 microM in the resting state, respectively). These data indicate that aprophen and benactyzine binding are allosterically regulated by the agonist sites of Torpedo AChR. Thus, aprophen and benactyzine are effective noncompetitive inhibitors of the AChR at concentrations of 1-50 microM, in either Torpedo or mammalian AChR. These concentrations correspond very well with the blood level of these drugs found in vivo to produce a therapeutic response against organophosphate poisoning.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010276 Parasympatholytics Agents that inhibit the actions of the parasympathetic nervous system. The major group of drugs used therapeutically for this purpose is the MUSCARINIC ANTAGONISTS. Antispasmodic,Antispasmodic Agent,Antispasmodic Drug,Antispasmodics,Parasympathetic-Blocking Agent,Parasympathetic-Blocking Agents,Parasympatholytic,Parasympatholytic Agent,Parasympatholytic Drug,Spasmolytic,Spasmolytics,Antispasmodic Agents,Antispasmodic Drugs,Antispasmodic Effect,Antispasmodic Effects,Parasympatholytic Agents,Parasympatholytic Drugs,Parasympatholytic Effect,Parasympatholytic Effects,Agent, Antispasmodic,Agent, Parasympathetic-Blocking,Agent, Parasympatholytic,Agents, Antispasmodic,Agents, Parasympathetic-Blocking,Agents, Parasympatholytic,Drug, Antispasmodic,Drug, Parasympatholytic,Drugs, Antispasmodic,Drugs, Parasympatholytic,Effect, Antispasmodic,Effect, Parasympatholytic,Effects, Antispasmodic,Effects, Parasympatholytic,Parasympathetic Blocking Agent,Parasympathetic Blocking Agents
D010666 Phenylpropionates Derivatives of 3-phenylpropionic acid, including its salts and esters.
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001535 Benactyzine A centrally acting muscarinic antagonist. Benactyzine has been used in the treatment of depression and is used in research to investigate the role of cholinergic systems on behavior. Amizil,Amizyl,Lucidil

Related Publications

G Amitai, and J M Herz, and R Bruckstein, and S Luz-Chapman
January 1999, Molecular pharmacology,
G Amitai, and J M Herz, and R Bruckstein, and S Luz-Chapman
September 2010, Neurochemistry international,
G Amitai, and J M Herz, and R Bruckstein, and S Luz-Chapman
September 1991, The Journal of biological chemistry,
G Amitai, and J M Herz, and R Bruckstein, and S Luz-Chapman
April 1993, Cellular and molecular neurobiology,
G Amitai, and J M Herz, and R Bruckstein, and S Luz-Chapman
July 2004, Biophysical journal,
G Amitai, and J M Herz, and R Bruckstein, and S Luz-Chapman
July 1991, Biochemical pharmacology,
G Amitai, and J M Herz, and R Bruckstein, and S Luz-Chapman
January 2006, The international journal of biochemistry & cell biology,
G Amitai, and J M Herz, and R Bruckstein, and S Luz-Chapman
November 2007, Journal of medicinal chemistry,
G Amitai, and J M Herz, and R Bruckstein, and S Luz-Chapman
December 1992, Biochemical and biophysical research communications,
G Amitai, and J M Herz, and R Bruckstein, and S Luz-Chapman
May 1987, Clinical and experimental pharmacology & physiology,
Copied contents to your clipboard!