[Linear dichroism of chromatin fibers]. 1987

S I Dimitrov, and I V Smirnov, and V L Makarov

The optical anisotropy of chromatin with different length of the linker DNA isolated from a variety of sources (Friend erythroleukemia cells, calf thymus, hen erythrocytes and sea urchin sperm) has been studied in a large range of mono- and bivalent cations by the use of flow linear dichroism and electric dichroism. We have found that all chromatins studied displayed negative LD values in the range of 0.25 mM EDTA--2 mM NaCl and close positive values in the range of 2-100 mM NaCl. Mg2+ cations, in contrast to Na+ cations, induce optically isotropic chromatin fibers. All chromatin samples exhibit positive form effect amounting to 5-10% of LD amplitude observed at 260 nm. This form effect is determined by the anisotropic scattering of polarized light by single chromatin fibers. The conformational transition at 2 mM NaCl leads to the distortion of chromatin filament structure. The reversibility of this distortion depends on the length of the linker DNA--for chromatins with linker DNA 10-30 b.p. it is partially reversible, while for preparations with longer linker DNA it is irreversible. Relatively low electric fields do not have an effect on chromatin structure, while higher electric fields (more than 7 kV/cm) distort the structure of chromatin.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D013950 Thymus Gland A single, unpaired primary lymphoid organ situated in the MEDIASTINUM, extending superiorly into the neck to the lower edge of the THYROID GLAND and inferiorly to the fourth costal cartilage. It is necessary for normal development of immunologic function early in life. By puberty, it begins to involute and much of the tissue is replaced by fat. Thymus,Gland, Thymus,Glands, Thymus,Thymus Glands

Related Publications

S I Dimitrov, and I V Smirnov, and V L Makarov
January 1989, Histochemistry,
S I Dimitrov, and I V Smirnov, and V L Makarov
February 1982, Biopolymers,
S I Dimitrov, and I V Smirnov, and V L Makarov
June 1986, Biochemistry,
S I Dimitrov, and I V Smirnov, and V L Makarov
March 1986, FEBS letters,
S I Dimitrov, and I V Smirnov, and V L Makarov
July 1983, European journal of biochemistry,
S I Dimitrov, and I V Smirnov, and V L Makarov
January 1993, Methods in enzymology,
S I Dimitrov, and I V Smirnov, and V L Makarov
November 1985, Biochemistry,
S I Dimitrov, and I V Smirnov, and V L Makarov
March 1974, Journal of molecular biology,
S I Dimitrov, and I V Smirnov, and V L Makarov
February 1985, European journal of biochemistry,
Copied contents to your clipboard!