Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. 1987

J F Milligan, and D R Groebe, and G W Witherell, and O C Uhlenbeck
Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215.

A method is described to synthesize small RNAs of defined length and sequence using T7 RNA polymerase and templates of synthetic DNA which contain the T7 promoter. Partially single stranded templates which are base paired only in the -17 to +1 promoter region are just as active in transcription as linear plasmid DNA. Runoff transcripts initiate at a unique, predictable position, but may have one nucleotide more or less on the 3' terminus. In addition to the full length products, the reactions also yield a large amount of smaller oligoribonucleotides in the range from 2 to 6 nucleotides which appear to be the result of abortive initiation events. Variants in the +1 to +6 region of the promoter are transcribed with reduced efficiency but increase the variety of RNAs which can be made. Transcription reaction conditions have been optimized to allow the synthesis of milligram amounts of virtually any RNA from 12 to 35 nucleotides in length.

UI MeSH Term Description Entries
D009843 Oligoribonucleotides A group of ribonucleotides (up to 12) in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral

Related Publications

J F Milligan, and D R Groebe, and G W Witherell, and O C Uhlenbeck
February 1989, Bioorganicheskaia khimiia,
J F Milligan, and D R Groebe, and G W Witherell, and O C Uhlenbeck
November 2013, Cold Spring Harbor protocols,
J F Milligan, and D R Groebe, and G W Witherell, and O C Uhlenbeck
January 2023, Methods in enzymology,
J F Milligan, and D R Groebe, and G W Witherell, and O C Uhlenbeck
October 1978, Indian journal of biochemistry & biophysics,
J F Milligan, and D R Groebe, and G W Witherell, and O C Uhlenbeck
August 1998, Nucleic acids research,
J F Milligan, and D R Groebe, and G W Witherell, and O C Uhlenbeck
March 2022, Biotechnology journal,
J F Milligan, and D R Groebe, and G W Witherell, and O C Uhlenbeck
June 1991, Carcinogenesis,
J F Milligan, and D R Groebe, and G W Witherell, and O C Uhlenbeck
March 1976, Nature,
J F Milligan, and D R Groebe, and G W Witherell, and O C Uhlenbeck
July 1973, Biochimica et biophysica acta,
J F Milligan, and D R Groebe, and G W Witherell, and O C Uhlenbeck
January 1989, Methods in enzymology,
Copied contents to your clipboard!