FtMt reduces oxidative stress-induced trophoblast cell dysfunction via the HIF-1α/VEGF signaling pathway. 2023

Xia Xu, and Xu Ye, and Mengwei Zhu, and Qiuyu Zhang, and Xiuli Li, and Jianying Yan
Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian, China.

BACKGROUND Preeclampsia (PE) is a complication of pregnancy that causes long-term adverse outcomes for the mother and fetus and may even lead to death. Oxidative stress caused by the imbalance of oxidants and antioxidants in the placenta has been considered as one of the key mechanisms of preeclampsia (together with inflammation, etc.), in which the placental mitochondria play an important role. The expression of hypoxia-inducible factor-1 (HIF-1α) and vascular endothelial growth factor (VEGF) is known to be increased in patients with PE. Mitochondrial ferritin (FtMt) is known to protect the mitochondria from oxidative stress, although its specific role in PE remains unclear. METHODS We used qRT-PCR and western blotting to detect the expression levels of FtMt, HIF-1α, and VEGF in placental tissues from patients with PE. Human chorionic trophoblast cells were also administered with hypoxia treatment, followed by the detection of cell proliferation, invasion and angiogenic capacity by CCK8, Transwell, and endothelial cell angiogenesis assays; we also detected the expression of HIF-1α and VEGF in these cells. Finally, overexpression or inhibitory FtMt lentiviral vectors, along with negative control vectors, were constructed and transfected into hypoxia-treated human chorionic trophoblast cells; this was followed by analyses of cell function. RESULTS The expression levels of FtMt, HIF-1α and VEGF in the PE group were higher than those in the control group (P < 0.05). Following hypoxia, there was an increase in the expression levels of HIF-1α and VEGF protein in trophoblast cells. There was also an increase in invasion ability and vascular formation ability along with a reduction in cell proliferation ability. These effects were reversed by transfecting cells with the knockout FtMt lentivirus vector. The differences were statistically significant. CONCLUSIONS Analyses showed that FtMt plays a key role in the vascular regulation of PE trophoblast cells after hypoxia possibly acting via the HIF-1α/VEGF signaling pathway. These results provide us an enhanced understanding of the pathogenesis of PE and suggest that the HIF-1α/VEGF signaling pathway represents a new target for the treatment of PE.

UI MeSH Term Description Entries
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011225 Pre-Eclampsia A complication of PREGNANCY, characterized by a complex of symptoms including maternal HYPERTENSION and PROTEINURIA with or without pathological EDEMA. Symptoms may range between mild and severe. Pre-eclampsia usually occurs after the 20th week of gestation, but may develop before this time in the presence of trophoblastic disease. Toxemias, Pregnancy,EPH Complex,EPH Gestosis,EPH Toxemias,Edema-Proteinuria-Hypertension Gestosis,Gestosis, EPH,Hypertension-Edema-Proteinuria Gestosis,Preeclampsia,Preeclampsia Eclampsia 1,Pregnancy Toxemias,Proteinuria-Edema-Hypertension Gestosis,Toxemia Of Pregnancy,1, Preeclampsia Eclampsia,1s, Preeclampsia Eclampsia,EPH Toxemia,Eclampsia 1, Preeclampsia,Eclampsia 1s, Preeclampsia,Edema Proteinuria Hypertension Gestosis,Gestosis, Edema-Proteinuria-Hypertension,Gestosis, Hypertension-Edema-Proteinuria,Gestosis, Proteinuria-Edema-Hypertension,Hypertension Edema Proteinuria Gestosis,Of Pregnancies, Toxemia,Of Pregnancy, Toxemia,Pre Eclampsia,Preeclampsia Eclampsia 1s,Pregnancies, Toxemia Of,Pregnancy Toxemia,Pregnancy, Toxemia Of,Proteinuria Edema Hypertension Gestosis,Toxemia Of Pregnancies,Toxemia, EPH,Toxemia, Pregnancy,Toxemias, EPH
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D005260 Female Females
D005293 Ferritins Iron-containing proteins that are widely distributed in animals, plants, and microorganisms. Their major function is to store IRON in a nontoxic bioavailable form. Each ferritin molecule consists of ferric iron in a hollow protein shell (APOFERRITINS) made of 24 subunits of various sequences depending on the species and tissue types. Basic Isoferritin,Ferritin,Isoferritin,Isoferritin, Basic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014327 Trophoblasts Cells lining the outside of the BLASTOCYST. After binding to the ENDOMETRIUM, trophoblasts develop into two distinct layers, an inner layer of mononuclear cytotrophoblasts and an outer layer of continuous multinuclear cytoplasm, the syncytiotrophoblasts, which form the early fetal-maternal interface (PLACENTA). Cytotrophoblasts,Syncytiotrophoblasts,Trophoblast,Cytotrophoblast,Syncytiotrophoblast
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D042461 Vascular Endothelial Growth Factor A The original member of the family of endothelial cell growth factors referred to as VASCULAR ENDOTHELIAL GROWTH FACTORS. Vascular endothelial growth factor-A was originally isolated from tumor cells and referred to as "tumor angiogenesis factor" and "vascular permeability factor". Although expressed at high levels in certain tumor-derived cells it is produced by a wide variety of cell types. In addition to stimulating vascular growth and vascular permeability it may play a role in stimulating VASODILATION via NITRIC OXIDE-dependent pathways. Alternative splicing of the mRNA for vascular endothelial growth factor A results in several isoforms of the protein being produced. Vascular Endothelial Growth Factor,Vascular Endothelial Growth Factor-A,GD-VEGF,Glioma-Derived Vascular Endothelial Cell Growth Factor,VEGF,VEGF-A,Vascular Permeability Factor,Vasculotropin,Glioma Derived Vascular Endothelial Cell Growth Factor,Permeability Factor, Vascular
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

Xia Xu, and Xu Ye, and Mengwei Zhu, and Qiuyu Zhang, and Xiuli Li, and Jianying Yan
March 2022, Life sciences,
Xia Xu, and Xu Ye, and Mengwei Zhu, and Qiuyu Zhang, and Xiuli Li, and Jianying Yan
June 2024, The Journal of pharmacy and pharmacology,
Xia Xu, and Xu Ye, and Mengwei Zhu, and Qiuyu Zhang, and Xiuli Li, and Jianying Yan
October 2022, Pharmaceutics,
Xia Xu, and Xu Ye, and Mengwei Zhu, and Qiuyu Zhang, and Xiuli Li, and Jianying Yan
November 2023, Cellular and molecular biology (Noisy-le-Grand, France),
Xia Xu, and Xu Ye, and Mengwei Zhu, and Qiuyu Zhang, and Xiuli Li, and Jianying Yan
April 2023, Food & function,
Xia Xu, and Xu Ye, and Mengwei Zhu, and Qiuyu Zhang, and Xiuli Li, and Jianying Yan
September 2018, Archives of gynecology and obstetrics,
Xia Xu, and Xu Ye, and Mengwei Zhu, and Qiuyu Zhang, and Xiuli Li, and Jianying Yan
August 2023, Journal of nanobiotechnology,
Xia Xu, and Xu Ye, and Mengwei Zhu, and Qiuyu Zhang, and Xiuli Li, and Jianying Yan
May 2013, Biochemical pharmacology,
Xia Xu, and Xu Ye, and Mengwei Zhu, and Qiuyu Zhang, and Xiuli Li, and Jianying Yan
September 2016, Scientific reports,
Xia Xu, and Xu Ye, and Mengwei Zhu, and Qiuyu Zhang, and Xiuli Li, and Jianying Yan
August 2023, European journal of pharmacology,
Copied contents to your clipboard!