Astroglial differentiation of fibronectin‑positive human "glia-like" cells. 2023

Ivana Sivakova, and Peter Mraz, and Anna Perzelova

OBJECTIVE Fibronectin (Fn) is a glycoprotein of extracellular matrix produced by a variety of mesenchymal and neoplastic cell types. BACKGROUND In adult brain tissue, Fn is restricted to blood vessels. However, adult human brain cultures are almost entirely comprised of flat or spindle‑shaped Fn-positive cells usually referred to as "glia-like" cells. Since Fn is primarily present in fibroblasts, these cultures may be considered to be of non-glial origin. METHODS Cells gained by long-term culturing of adult human brain tissue derived from brain biopsies obtained from 12 patients with non-malignant diagnoses were examined by immunofluorescence methods. RESULTS Primary cultures contained GFAP-/Vim+/Fn+ "glia-like" cells (95-98 %) and GFAP+/Vim+/Fn- astrocytes (0.1 %) which disappeared by passage number 3. The formation of cell processes and enlargement of cell bodies was observed in 9 of 12 cultures with decreased cell growth during passages 12 to 17. It is remarkable that during this period, all "glia-like" cells became GFAP+/Vim+/Fn+. CONCLUSIONS Herein, we confirm our previously published hypothesis about the origin of adult human "glia-like" cells, which we consider to be precursor cells scattered through the brain cortex and subcortical white matter. Cultures were comprised entirely of GFAP-/Fn+ "glia-like" cells and showed morphological and immunochemical astroglial differentiation with spontaneously decelerated growth during prolonged passaging. We propose that the adult human brain tissue contains a "dormant population" of undefined glial precursor cells. Under culture, these cells show to have a high proliferative capacity and different stages of cell dedifferentiation (Fig. 2, Ref. 21).

UI MeSH Term Description Entries
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D005904 Glial Fibrillary Acidic Protein An intermediate filament protein found only in glial cells or cells of glial origin. MW 51,000. Glial Intermediate Filament Protein,Astroprotein,GFA-Protein,Glial Fibrillary Acid Protein,GFA Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial

Related Publications

Ivana Sivakova, and Peter Mraz, and Anna Perzelova
April 2003, Glia,
Ivana Sivakova, and Peter Mraz, and Anna Perzelova
January 1971, Acta pathologica et microbiologica Scandinavica. Section A, Pathology,
Ivana Sivakova, and Peter Mraz, and Anna Perzelova
February 2004, Experimental & molecular medicine,
Ivana Sivakova, and Peter Mraz, and Anna Perzelova
August 1994, Journal of neuroscience research,
Ivana Sivakova, and Peter Mraz, and Anna Perzelova
July 2020, Stem cell reports,
Ivana Sivakova, and Peter Mraz, and Anna Perzelova
February 2020, Stem cell reports,
Ivana Sivakova, and Peter Mraz, and Anna Perzelova
October 2011, Nature protocols,
Ivana Sivakova, and Peter Mraz, and Anna Perzelova
June 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Ivana Sivakova, and Peter Mraz, and Anna Perzelova
December 2017, Journal of chemical neuroanatomy,
Ivana Sivakova, and Peter Mraz, and Anna Perzelova
September 2017, Cold Spring Harbor protocols,
Copied contents to your clipboard!