Distributions of fluorescence decay times for parinaric acids in phospholipid membranes. 1987

D R James, and J R Turnbull, and B D Wagner, and W R Ware, and N O Petersen
Department of Chemistry, University of Western Ontario, London, Canada.

Analysis of fluorescence decay data for probes incorporated into model or biological membranes invariably requires fitting to more than one decay time even though the same probe exhibits nearly single-exponential decay in solution. The parinaric acids (cis and trans) are examples of this. Data are presented for both parinaric acid isomers in dimyristoylphosphatidylcholine membranes collected to higher precision than normally encountered, and the fluorescence decays are shown to be best described by a smooth distribution of decay times rather than by a few discrete lifetimes. The temperature dependence of the fluorescence decay reveals a clear shift in the distribution to longer lifetimes associated with the membrane phase transition at 23.5 degrees C. The physical significance is that fluorescence lifetime measurements appear to reflect a physical process with a distribution of lifetimes rather than several distinct physical processes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D004134 Dimyristoylphosphatidylcholine A synthetic phospholipid used in liposomes and lipid bilayers for the study of biological membranes. Dimyristoyllecithin,1,2-Dimyristoyl-glycero-3-phosphorylcholine,1,2-Ditetradecanoyl-glycero-3-phosphocholine,1,2-Ditetradecyl-glycero-3-phosphocholine,DMCP,DMPC,1,2 Dimyristoyl glycero 3 phosphorylcholine,1,2 Ditetradecanoyl glycero 3 phosphocholine,1,2 Ditetradecyl glycero 3 phosphocholine
D005231 Fatty Acids, Unsaturated FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds. Fatty Acids, Polyunsaturated,Polyunsaturated Fatty Acid,Unsaturated Fatty Acid,Polyunsaturated Fatty Acids,Acid, Polyunsaturated Fatty,Acid, Unsaturated Fatty,Acids, Polyunsaturated Fatty,Acids, Unsaturated Fatty,Fatty Acid, Polyunsaturated,Fatty Acid, Unsaturated,Unsaturated Fatty Acids
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence

Related Publications

D R James, and J R Turnbull, and B D Wagner, and W R Ware, and N O Petersen
October 1987, Biophysical chemistry,
D R James, and J R Turnbull, and B D Wagner, and W R Ware, and N O Petersen
May 1990, Biochemistry,
D R James, and J R Turnbull, and B D Wagner, and W R Ware, and N O Petersen
May 2009, Dalton transactions (Cambridge, England : 2003),
D R James, and J R Turnbull, and B D Wagner, and W R Ware, and N O Petersen
May 1972, Nature: New biology,
D R James, and J R Turnbull, and B D Wagner, and W R Ware, and N O Petersen
June 1994, Journal of fluorescence,
D R James, and J R Turnbull, and B D Wagner, and W R Ware, and N O Petersen
June 1989, Biochemistry,
D R James, and J R Turnbull, and B D Wagner, and W R Ware, and N O Petersen
January 2012, Current protocols in cytometry,
D R James, and J R Turnbull, and B D Wagner, and W R Ware, and N O Petersen
December 1977, Biophysical journal,
D R James, and J R Turnbull, and B D Wagner, and W R Ware, and N O Petersen
January 1983, Journal of cellular biochemistry,
D R James, and J R Turnbull, and B D Wagner, and W R Ware, and N O Petersen
June 1986, The Journal of biological chemistry,
Copied contents to your clipboard!