Structural requirements for substrates of cytochromes P-450 and P-448. 1987

D F Lewis, and C Ioannides, and D V Parke
Department of Biochemistry, University of Surrey, Guildford, U.K.

Distinct and different molecular structural features are manifested by substrates, inhibitors and inducers of the two families of liver microsomal enzymes, the phenobarbital-induced cytochromes P-450 and the 3-methylcholanthrene-induced cytochromes P-448. In a theoretical study based on molecular orbital calculations and molecular graphics, it is established that cytochrome P-448 substrates contain fused aromatic or heteroaromatic rings giving rise to overall molecular planarity with relatively small molecular depth. In contrast, substrates of the cytochromes P-450 have greater conformational freedom and an ability to bind at more than one point of attachment, as a result of possession of certain characteristic functions, namely, a carbonyl and/or amine moiety coupled with an iso-propyl group, or similar function of equivalent shape and hydrophobicity. The implications are that the binding sites of cytochromes P-448 contain a number of hydrophobic aromatic amino acid residues orientated so as to allow occupation by similar substrates containing co-planar aromatic rings, whereas those of the phenobarbital-induced cytochromes P-450 contain hydrophilic amino acid residues capable of hydrogen bonding to greater than C = O moieties and at least one leucine or valine residue, as these contain the complementary isopropyl function. The corollary of these findings is the possibility of prediction of the toxicity of new chemicals on the basis of their molecular dimensions.

UI MeSH Term Description Entries
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D019388 Cytochrome P-450 CYP1A2 A cytochrome P450 enzyme subtype that has specificity for relatively planar heteroaromatic small molecules, such as CAFFEINE and ACETAMINOPHEN. CYP1A2,Phenacetin O-Dealkylase,CYP 1A2,Caffeine Demethylase,Cytochrome P-450 LM(4),Cytochrome P-450 LM4,Cytochrome P-450d,Cytochrome P450 1A2,CYP1A2, Cytochrome P-450,Cytochrome P 450 CYP1A2,Cytochrome P 450 LM4,Cytochrome P 450d,Demethylase, Caffeine,O-Dealkylase, Phenacetin,P-450 LM4, Cytochrome,Phenacetin O Dealkylase

Related Publications

D F Lewis, and C Ioannides, and D V Parke
July 1989, Biochemical pharmacology,
D F Lewis, and C Ioannides, and D V Parke
July 1979, Journal of medicinal chemistry,
D F Lewis, and C Ioannides, and D V Parke
January 1987, Voprosy meditsinskoi khimii,
D F Lewis, and C Ioannides, and D V Parke
February 1972, Biochemical and biophysical research communications,
D F Lewis, and C Ioannides, and D V Parke
September 1981, Biochemical and biophysical research communications,
D F Lewis, and C Ioannides, and D V Parke
April 1985, Xenobiotica; the fate of foreign compounds in biological systems,
D F Lewis, and C Ioannides, and D V Parke
October 1980, European journal of biochemistry,
D F Lewis, and C Ioannides, and D V Parke
April 1982, Toxicology letters,
D F Lewis, and C Ioannides, and D V Parke
January 1973, Drug metabolism and disposition: the biological fate of chemicals,
D F Lewis, and C Ioannides, and D V Parke
November 1974, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!