Anti-inflammatory effects of Peucedanum japonicum Thunberg leaves extract in Lipopolysaccharide-stimulated RAW264.7 cells. 2023

Ji Hyeon Park, and Jang Hoon Kim, and Jae Young Shin, and Eun Seo Kang, and Byoung Ok Cho
Institute of Health Science, Jeonju University, Jeonju-si, Jeollabuk-do, 55069, Republic of Korea. Electronic address: wlgusliza@naver.com.

BACKGROUND Peucedanum japonicum Thunberg are perennial herbaceous plants known to be cultivated for food and traditional medicinal purposes. P. japonicum has been used in traditional medicine to soothe coughs and colds, and to treat many other inflammatory diseases. However, there are no studies on the anti-inflammatory effects of the leaves. OBJECTIVE Inflammation plays an important role in our body as a defense response of biological tissues to certain stimuli. However, the excessive inflammatory response can lead to various diseases. This study aimed to investigate the anti-inflammatory effects of P. japonicum leaves extract (PJLE) in LPS-stimulated RAW 264.7 cells. METHODS Nitric Oxide (NO) production assay measured by NO assay. Inducible NO synthase (iNOS), COX-2, MAPKs, AKT, NF-κB, HO-1, Nrf-2 were examined by western blotting. PGE2, TNF-α, and IL-6 were analyzed by ELSIA. Nuclear translocation of NF-κB was detected by immunofluorescence staining. RESULTS PJLE suppressed inducible nitric oxygen synthase (iNOS) and prostaglandin-endoperoxide synthase 2 (cyclooxygenase-2, COX-2) expression, increased heme oxygenase 1 (HO-1) expression, and decreased nitric oxide production. And PJLE inhibited the phosphorylation of AKT, MAPK, and NF-κB. Taken together, PJLE down-regulated inflammatory factors such as iNOS and COX-2 by inhibiting the phosphorylation of AKT, MAPK, and NF-κB. CONCLUSIONS These results suggest that PJLE can be used as a therapeutic material to modulate inflammatory diseases.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010936 Plant Extracts Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard. Herbal Medicines,Plant Extract,Extract, Plant,Extracts, Plant,Medicines, Herbal
D000067996 RAW 264.7 Cells A transformed macrophage cell line isolated from ASCITES of mice infected with ABELSON MURINE LEUKEMIA VIRUS. RAW 264.7 Cell Line,264.7 Cell, RAW,264.7 Cells, RAW,Cell, RAW 264.7,Cells, RAW 264.7,RAW 264.7 Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000893 Anti-Inflammatory Agents Substances that reduce or suppress INFLAMMATION. Anti-Inflammatory Agent,Antiinflammatory Agent,Agents, Anti-Inflammatory,Agents, Antiinflammatory,Anti-Inflammatories,Antiinflammatories,Antiinflammatory Agents,Agent, Anti-Inflammatory,Agent, Antiinflammatory,Agents, Anti Inflammatory,Anti Inflammatories,Anti Inflammatory Agent,Anti Inflammatory Agents
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB
D051057 Proto-Oncogene Proteins c-akt Protein-serine-threonine kinases that contain PLECKSTRIN HOMOLOGY DOMAINS and are activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. They play a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells. akt Proto-Oncogene Protein,c-akt Protein,AKT1 Protein Kinase,AKT2 Protein Kinase,AKT3 Protein Kinase,Akt-alpha Protein,Akt-beta Protein,Akt-gamma Protein,Protein Kinase B,Protein Kinase B alpha,Protein Kinase B beta,Protein Kinase B gamma,Protein-Serine-Threonine Kinase (Rac),Proto-Oncogene Protein Akt,Proto-Oncogene Protein RAC,Proto-Oncogene Proteins c-akt1,Proto-Oncogene Proteins c-akt2,Proto-Oncogene Proteins c-akt3,RAC-PK Protein,Rac Protein Kinase,Rac-PK alpha Protein,Rac-PK beta Protein,Related to A and C-Protein,c-akt Proto-Oncogene Protein,Akt alpha Protein,Akt beta Protein,Akt gamma Protein,Akt, Proto-Oncogene Protein,Protein, akt Proto-Oncogene,Protein, c-akt Proto-Oncogene,Proteins c-akt1, Proto-Oncogene,Proteins c-akt2, Proto-Oncogene,Proteins c-akt3, Proto-Oncogene,Proto Oncogene Protein Akt,Proto Oncogene Protein RAC,Proto Oncogene Proteins c akt,Proto Oncogene Proteins c akt1,Proto Oncogene Proteins c akt2,Proto Oncogene Proteins c akt3,Proto-Oncogene Protein, akt,Proto-Oncogene Protein, c-akt,RAC PK Protein,RAC, Proto-Oncogene Protein,Rac PK alpha Protein,Rac PK beta Protein,Related to A and C Protein,akt Proto Oncogene Protein,alpha Protein, Rac-PK,c akt Proto Oncogene Protein,c-akt, Proto-Oncogene Proteins,c-akt1, Proto-Oncogene Proteins,c-akt2, Proto-Oncogene Proteins,c-akt3, Proto-Oncogene Proteins
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D051546 Cyclooxygenase 2 An inducibly-expressed subtype of prostaglandin-endoperoxide synthase. It plays an important role in many cellular processes and INFLAMMATION. It is the target of COX2 INHIBITORS. COX-2 Prostaglandin Synthase,Cyclo-Oxygenase II,Cyclooxygenase-2,PGHS-2,PTGS2,Prostaglandin H Synthase-2,COX 2 Prostaglandin Synthase,Cyclo Oxygenase II,Prostaglandin H Synthase 2,Prostaglandin Synthase, COX-2,Synthase, COX-2 Prostaglandin

Related Publications

Ji Hyeon Park, and Jang Hoon Kim, and Jae Young Shin, and Eun Seo Kang, and Byoung Ok Cho
August 2014, Molecular medicine reports,
Ji Hyeon Park, and Jang Hoon Kim, and Jae Young Shin, and Eun Seo Kang, and Byoung Ok Cho
April 2024, Journal of microbiology and biotechnology,
Ji Hyeon Park, and Jang Hoon Kim, and Jae Young Shin, and Eun Seo Kang, and Byoung Ok Cho
March 2016, Biomolecules & therapeutics,
Ji Hyeon Park, and Jang Hoon Kim, and Jae Young Shin, and Eun Seo Kang, and Byoung Ok Cho
December 2012, Journal of enzyme inhibition and medicinal chemistry,
Ji Hyeon Park, and Jang Hoon Kim, and Jae Young Shin, and Eun Seo Kang, and Byoung Ok Cho
May 2016, Pakistan journal of pharmaceutical sciences,
Ji Hyeon Park, and Jang Hoon Kim, and Jae Young Shin, and Eun Seo Kang, and Byoung Ok Cho
January 2022, Evidence-based complementary and alternative medicine : eCAM,
Ji Hyeon Park, and Jang Hoon Kim, and Jae Young Shin, and Eun Seo Kang, and Byoung Ok Cho
October 2023, Chinese journal of integrative medicine,
Ji Hyeon Park, and Jang Hoon Kim, and Jae Young Shin, and Eun Seo Kang, and Byoung Ok Cho
October 2018, Fitoterapia,
Ji Hyeon Park, and Jang Hoon Kim, and Jae Young Shin, and Eun Seo Kang, and Byoung Ok Cho
July 2010, Journal of ethnopharmacology,
Ji Hyeon Park, and Jang Hoon Kim, and Jae Young Shin, and Eun Seo Kang, and Byoung Ok Cho
May 2019, Annals of clinical and laboratory science,
Copied contents to your clipboard!