The effect of heat treatment on colostral and newborn calf redox status and oxylipid biomarkers. 2023

Sabine Mann, and Jeff Gandy, and Giulio Curone, and Angel Abuelo
Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853. Electronic address: sm682@cornell.edu.

Newborn calves experience altered redox balance upon transition to extrauterine life. In addition to its nutritional value, colostrum is rich in bioactive factors, including pro- and antioxidants. The objective was to investigate differences in pro- and antioxidants as well as oxidative markers in raw and heat-treated (HT) colostrum and in the blood of calves fed either raw or HT colostrum. Eleven colostrum samples (≥8 L) of Holstein cows were each divided into a raw or HT (60°C, 60 min) portion. Both treatments were stored for <24 h at 4°C and tube-fed in a randomized-paired design at 8.5% of body weight to 22 newborn female Holstein calves within 1 h after birth. Colostrum samples were obtained before feeding, and calf blood samples were taken immediately before feeding (0 h) and at 4, 8, and 24 h after feeding. All samples were analyzed for reactive oxygen and nitrogen species (RONS) and antioxidant potential (AOP), from which the oxidant status index (OSi) was calculated. In 0-, 4-, and 8-h plasma samples, targeted fatty acids (FA) were analyzed using liquid chromatography-mass spectrometry, and oxylipids and isoprostanes (IsoP) using liquid chromatography-tandem mass spectrometry. Results for RONS, AOP, and OSi were analyzed by mixed-effects ANOVA or mixed-effects repeated-measures ANOVA, for colostrum and calf blood samples, respectively, whereas FA, oxylipid, and IsoP were analyzed using false discovery rate-adjusted analysis of paired data. Compared with control, HT colostrum showed lower RONS [least squares means (LSM) 189, 95% confidence interval (95% CI): 159-219 vs. 262, 95% CI: 232-292) relative fluorescence units] and OSi (7.2, 95% CI: 6.0-8.3 vs. 10.0, 95% CI: 8.9-11.1), but AOP remained unchanged (26.7, 95% CI: 24.4-29.0 vs. 26.4, 95% CI: 24.1-28.7 Trolox equivalents/µL). Changes in colostrum oxidative markers due to heat treatment were minor. No changes in RONS, AOP, OSi, or oxidative markers were detected in calf plasma. In both groups of calves, plasma RONS activity declined considerably at all postfeeding time points compared with precolostral values, and AOP reached its maximum 8 to 24 h after feeding. Generally, oxylipid and IsoP plasma abundance reached nadirs at 8 h post-colostrum in both groups. Overall, effects due to heat treatment on redox balance of colostrum and newborn calves and on oxidative biomarkers were minimal. In this study, heat treatment of colostrum reduced RONS activity but did not lead to detectable changes in calf oxidative status overall. This indicates that there were only minor changes in colostral bioactive components that could alter newborn redox balance and markers of oxidative damage.

UI MeSH Term Description Entries
D006979 Hyperthermia, Induced Abnormally high temperature intentionally induced in living things regionally or whole body. It is most often induced by radiation (heat waves, infra-red), ultrasound, or drugs. Fever Therapy,Hyperthermia, Local,Hyperthermia, Therapeutic,Thermotherapy,Induced Hyperthermia,Therapeutic Hyperthermia,Therapy, Fever,Local Hyperthermia
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003126 Colostrum The thin, yellow, serous fluid secreted by the mammary glands during pregnancy and immediately postpartum before lactation begins. It consists of immunologically active substances, white blood cells, water, protein, fat, and carbohydrates. Colostrums
D005260 Female Females
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous

Related Publications

Sabine Mann, and Jeff Gandy, and Giulio Curone, and Angel Abuelo
September 1982, Journal of dairy science,
Sabine Mann, and Jeff Gandy, and Giulio Curone, and Angel Abuelo
January 1979, American journal of veterinary research,
Sabine Mann, and Jeff Gandy, and Giulio Curone, and Angel Abuelo
February 1984, The Veterinary record,
Sabine Mann, and Jeff Gandy, and Giulio Curone, and Angel Abuelo
February 1981, Journal of dairy science,
Sabine Mann, and Jeff Gandy, and Giulio Curone, and Angel Abuelo
January 2014, Journal of dairy science,
Sabine Mann, and Jeff Gandy, and Giulio Curone, and Angel Abuelo
November 1987, Research in veterinary science,
Sabine Mann, and Jeff Gandy, and Giulio Curone, and Angel Abuelo
March 1969, Immunology,
Sabine Mann, and Jeff Gandy, and Giulio Curone, and Angel Abuelo
June 1986, Australian veterinary journal,
Sabine Mann, and Jeff Gandy, and Giulio Curone, and Angel Abuelo
January 1950, The British journal of nutrition,
Sabine Mann, and Jeff Gandy, and Giulio Curone, and Angel Abuelo
October 2014, Journal of dairy science,
Copied contents to your clipboard!