Metformin ameliorates calcium oxalate crystallization and stone formation by activating the Nrf2/HO-1 signaling pathway: Two birds with one stone. 2023

Xiaofang Zhang, and Futu Liang, and Tianyang Li, and Yaodong Jiang, and Fei Ren
Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.

Deposition of calcium oxalate (CaOx) crystals and oxidative stress-induced injury of renal tubular epithelial cell are the primary pathogenic factors of nephrolithiasis. In this study we investigated the beneficial effects of metformin hydrochloride (MH) against nephrolithiasis and explored the underlying molecular mechanism. Our results demonstrated that MH inhibited the formation of CaOx crystals and promoted the transformation of thermodynamically stable CaOx monohydrate (COM) to more unstable CaOx dihydrate (COD). MH treatment effectively ameliorated oxalate-induced oxidative injury and mitochondrial damage in renal tubular cells and reduced CaOx crystal deposition in rat kidneys. MH also attenuated oxidative stress by lowering MDA level and enhancing SOD activity in HK-2 and NRK-52E cells and in a rat model of nephrolithiasis. In both HK-2 and NRK-52E cells, COM exposure significantlylowered the expressions of HO-1 and Nrf2, which was rescued by MH treatment even in the presence of Nrf2 and HO-1 inhibitors. In rats with nephrolithiasis, MH treatment significantly rescued the down-regulation of the mRNA and protein expression of Nrf2 and HO-1 in the kidneys. These results demonstrate that MH can alleviate CaOx crystal deposition and kidney tissue injury in rats with nephrolithiasis by suppressing oxidative stress and activating the Nrf2/HO-1 signaling pathway, suggesting the potential value of MH in the treatment of nephrolithiasis.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007669 Kidney Calculi Stones in the KIDNEY, usually formed in the urine-collecting area of the kidney (KIDNEY PELVIS). Their sizes vary and most contains CALCIUM OXALATE. Kidney Stones,Renal Calculi,Nephrolith,Renal Calculus,Calculi, Kidney,Calculi, Renal,Calculus, Kidney,Calculus, Renal,Kidney Calculus,Kidney Stone,Stone, Kidney,Stones, Kidney
D008687 Metformin A biguanide hypoglycemic agent used in the treatment of non-insulin-dependent diabetes mellitus not responding to dietary modification. Metformin improves glycemic control by improving insulin sensitivity and decreasing intestinal absorption of glucose. (From Martindale, The Extra Pharmacopoeia, 30th ed, p289) Dimethylguanylguanidine,Dimethylbiguanidine,Glucophage,Metformin HCl,Metformin Hydrochloride,HCl, Metformin,Hydrochloride, Metformin
D002129 Calcium Oxalate The calcium salt of oxalic acid, occurring in the urine as crystals and in certain calculi. Calcium Oxalate (1:1),Calcium Oxalate Dihydrate,Calcium Oxalate Dihydrate (1:1),Calcium Oxalate Monohydrate,Calcium Oxalate Monohydrate (1:1),Calcium Oxalate Trihydrate,Dihydrate, Calcium Oxalate,Monohydrate, Calcium Oxalate,Oxalate, Calcium,Trihydrate, Calcium Oxalate
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D051267 NF-E2-Related Factor 2 A basic-leucine zipper transcription factor that was originally described as a transcriptional regulator controlling expression of the BETA-GLOBIN gene. It may regulate the expression of a wide variety of genes that play a role in protecting cells from oxidative damage. Nfe2l2 Protein,Nuclear Factor (Erythroid-Derived 2)-Like 2 Protein,Nuclear Factor E2-Related Factor 2,NF E2 Related Factor 2,Nuclear Factor E2 Related Factor 2
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Xiaofang Zhang, and Futu Liang, and Tianyang Li, and Yaodong Jiang, and Fei Ren
January 2023, Cardiovascular therapeutics,
Xiaofang Zhang, and Futu Liang, and Tianyang Li, and Yaodong Jiang, and Fei Ren
January 2023, The American journal of Chinese medicine,
Xiaofang Zhang, and Futu Liang, and Tianyang Li, and Yaodong Jiang, and Fei Ren
July 2019, The Journal of urology,
Xiaofang Zhang, and Futu Liang, and Tianyang Li, and Yaodong Jiang, and Fei Ren
November 2022, Phytomedicine : international journal of phytotherapy and phytopharmacology,
Xiaofang Zhang, and Futu Liang, and Tianyang Li, and Yaodong Jiang, and Fei Ren
January 2021, Life sciences,
Xiaofang Zhang, and Futu Liang, and Tianyang Li, and Yaodong Jiang, and Fei Ren
June 2020, Investigative ophthalmology & visual science,
Xiaofang Zhang, and Futu Liang, and Tianyang Li, and Yaodong Jiang, and Fei Ren
July 2023, Molecular biology reports,
Xiaofang Zhang, and Futu Liang, and Tianyang Li, and Yaodong Jiang, and Fei Ren
September 2019, Neuroscience letters,
Xiaofang Zhang, and Futu Liang, and Tianyang Li, and Yaodong Jiang, and Fei Ren
July 2022, International journal of molecular medicine,
Xiaofang Zhang, and Futu Liang, and Tianyang Li, and Yaodong Jiang, and Fei Ren
May 2024, European journal of histochemistry : EJH,
Copied contents to your clipboard!