Regulation of genes for glycolytic enzymes in cultured rat hepatoma cell lines. 1987

M C Meienhofer, and E De Medicis, and M Cognet, and A Kahn
Laboratoire de Recherche en Génétique et Pathologie Moléculaires, Institut National de la Santé et de la Recherche Médicale Unité 129, Centre Hospitalier Universitaire, Cochin, Paris.

We examined the control by hormones and culture conditions of the expression of pyruvate kinase L, aldolase B, and a liver-specific 5.4-kb mRNA species [Pichard, A. L. et al. (1985) Biochem. J. 226, 637-644] in three rat hepatoma cell lines, MH1C1, Fao and Faza. The expression level of these markers ranges from 2% (for pyruvate kinase L mRNA) to 10-12% (for 5.4-kb mRNA species) of the glucose-induced mRNA values found in rat liver. The mRNAs of the three liver-specific genes strongly decrease after treatment of the hepatoma cells with cyclic 8-bromo-AMP, cyclic dibutyryl-AMP or forkolin, pyruvate kinase L mRNA being the most sensitive to this inhibiting effect. In contrast, the concentration of pyruvate kinase L mRNA nuclear precursors is not modified by the cyclic AMP analogues, indicating that these agents do not act at the transcriptional level but, instead, probably destabilize the transcripts. Glucose or fructose does not modify the expression of these three marker genes in any of the studied cell lines. Insulin is inefficient in modifying concentrations of the mRNAs for pyruvate kinase L and aldolase B, alone or in the presence of carbohydrates. In contrast, it stimulates about fivefold the expression of the 5.4-kb mRNA species in the MH1C1 cell line; this stimulation is carbohydrate-independent. The hepatoma cell lines mimic, therefore, the effect of cyclic AMP on the inhibition in vivo of the expression of genes encoding glycolytic or lipogenic enzymes [Vaulont, S. et al. (1984) Biochem. Biophys. Res. Commun. 125, 135-147]. In contrast, the effect of carbohydrates [Munnich, A. et al. (1984) J. Biol. Chem. 259, 10228-10231] is undetectable. The insulin sensitivity of the liver-specific genes is conserved for the 5.4-kb mRNA species only, especially in the MH1C1 cell line, but not for the other investigated mRNAs, which seems to reflect a fundamental difference in the in vivo effect of insulin on these genes. Finally, S1 nuclease mapping of the start-site of pyruvate kinase L gene transcription shows that the normal site used in vivo is also used in the Fao and Faza lines while, in the MH1C1 line, it coexists with multiple aberrant upstream initiation sites.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D011770 Pyruvate Kinase ATP:pyruvate 2-O-phosphotransferase. A phosphotransferase that catalyzes reversibly the phosphorylation of pyruvate to phosphoenolpyruvate in the presence of ATP. It has four isozymes (L, R, M1, and M2). Deficiency of the enzyme results in hemolytic anemia. EC 2.7.1.40. L-Type Pyruvate Kinase,M-Type Pyruvate Kinase,M1-Type Pyruvate Kinase,M2-Type Pyruvate Kinase,Pyruvate Kinase L,R-Type Pyruvate Kinase,L Type Pyruvate Kinase,M Type Pyruvate Kinase,M1 Type Pyruvate Kinase,M2 Type Pyruvate Kinase,Pyruvate Kinase, L-Type,Pyruvate Kinase, M-Type,Pyruvate Kinase, M1-Type,Pyruvate Kinase, M2-Type,Pyruvate Kinase, R-Type,R Type Pyruvate Kinase
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D005634 Fructose-Bisphosphate Aldolase An enzyme of the lyase class that catalyzes the cleavage of fructose 1,6-biphosphate to form dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. The enzyme also acts on (3S,4R)-ketose 1-phosphates. The yeast and bacterial enzymes are zinc proteins. (Enzyme Nomenclature, 1992) E.C. 4.1.2.13. Aldolase,Fructosediphosphate Aldolase,Aldolase A,Aldolase B,Aldolase C,Fructose 1,6-Bisphosphate Aldolase,Fructose 1,6-Bisphosphate Aldolase, Class II,Fructose 1-Phosphate Aldolase,Fructose Biphosphate Aldolase,Fructosemonophosphate Aldolase,1,6-Bisphosphate Aldolase, Fructose,Aldolase, Fructose 1,6-Bisphosphate,Aldolase, Fructose 1-Phosphate,Aldolase, Fructose Biphosphate,Aldolase, Fructose-Bisphosphate,Aldolase, Fructosediphosphate,Aldolase, Fructosemonophosphate,Fructose 1 Phosphate Aldolase,Fructose 1,6 Bisphosphate Aldolase,Fructose Bisphosphate Aldolase
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

M C Meienhofer, and E De Medicis, and M Cognet, and A Kahn
June 1965, Cancer research,
M C Meienhofer, and E De Medicis, and M Cognet, and A Kahn
May 1985, Biochemical pharmacology,
M C Meienhofer, and E De Medicis, and M Cognet, and A Kahn
May 1989, Cancer research,
M C Meienhofer, and E De Medicis, and M Cognet, and A Kahn
November 1984, Cancer research,
M C Meienhofer, and E De Medicis, and M Cognet, and A Kahn
November 1990, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
M C Meienhofer, and E De Medicis, and M Cognet, and A Kahn
January 1983, International review of cytology,
M C Meienhofer, and E De Medicis, and M Cognet, and A Kahn
August 1992, European journal of cell biology,
M C Meienhofer, and E De Medicis, and M Cognet, and A Kahn
September 1990, Cancer research,
M C Meienhofer, and E De Medicis, and M Cognet, and A Kahn
April 1975, Acta medica Okayama,
M C Meienhofer, and E De Medicis, and M Cognet, and A Kahn
October 1983, Biochemical and biophysical research communications,
Copied contents to your clipboard!