[Genetic Evaluation of Mitochondria Dysfunction in Coronary Artery Disease: Part 1]. 2023

Nazlı Doğan, and Neslihan Çoban
Istanbul University, Aziz Sancar Experimental Medicine Research Institute, Department of Genetics, Istanbul, Türkiye.

Mitochondria are cell organelles that play an important role in various cellular processes, especially in aerobic respiration and energy production. Although it has its own genome, the mitochondrial genome does not encode all of the proteins necessary for the mitochondria to function. Nuclear genome is needed for increased mitochondrial number, metabolic activities associated with mitochondria, and replication of mitochondrial deoxyribonucleic acid. As a result of mitochondria dysfunction in cells, oxidative stress occurs with the formation of reactive oxygen species, a product of oxidative metabolism, and the oxidant/antioxidant imbalance. Reactive oxygen species damage cellular molecules such as proteins, ribonucleic acid, deoxyribonucleic acid, and mitochondrial deoxyribonucleic acid under the conditions of oxidative stress. Molecular changes as a result of the reactive oxygen species cause the loss of mitochondria function, resulting in an increased number of dysfunctional mitochondria. Thus, the loss of function of mitochondria and defects in oxidative metabolism increase the formation of reactive oxygen species and cause an increase in mutations in mitochondrial deoxyribonucleic acid. These results also affect mitochondrial biogenesis and accelerate the formation of multifactorial diseases as a result of the decrease in the number of functional mitochondria. In addition, microribonucleic acids, one of the epigenetic regulators, regulate nuclear and mitochondrial genes that control mitochondrial functions. Mitochondrial deoxyribonucleic acid mutated with reactive oxygen species, altered nuclear genome regulators and micro-ribonucleic acids, have been associated with various diseases mediated by mitochondrial dysfunction, including aging and coronary artery disease.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D003324 Coronary Artery Disease Pathological processes of CORONARY ARTERIES that may derive from a congenital abnormality, atherosclerotic, or non-atherosclerotic cause. Arteriosclerosis, Coronary,Atherosclerosis, Coronary,Coronary Arteriosclerosis,Coronary Atherosclerosis,Left Main Coronary Artery Disease,Left Main Coronary Disease,Left Main Disease,Arterioscleroses, Coronary,Artery Disease, Coronary,Artery Diseases, Coronary,Atheroscleroses, Coronary,Coronary Arterioscleroses,Coronary Artery Diseases,Coronary Atheroscleroses,Left Main Diseases
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

Nazlı Doğan, and Neslihan Çoban
January 2003, Genetics in medicine : official journal of the American College of Medical Genetics,
Nazlı Doğan, and Neslihan Çoban
May 2010, Journal of renal care,
Nazlı Doğan, and Neslihan Çoban
January 1999, Nursing times,
Nazlı Doğan, and Neslihan Çoban
April 2001, The Western journal of medicine,
Nazlı Doğan, and Neslihan Çoban
September 2009, Praxis,
Nazlı Doğan, and Neslihan Çoban
January 2021, International journal of molecular sciences,
Nazlı Doğan, and Neslihan Çoban
January 2023, Current pharmaceutical design,
Nazlı Doğan, and Neslihan Çoban
September 1999, Revista portuguesa de cardiologia : orgao oficial da Sociedade Portuguesa de Cardiologia = Portuguese journal of cardiology : an official journal of the Portuguese Society of Cardiology,
Nazlı Doğan, and Neslihan Çoban
February 1974, The American journal of cardiology,
Nazlı Doğan, and Neslihan Çoban
January 1993, Annual review of medicine,
Copied contents to your clipboard!