Dithiols and monothiols are linked with GABA transport in membrane vesicles of rat brain synaptosomes. 1987

G T Robillard, and J M Schaaf, and A W Teelken
Department of Physical Chemistry, University of Groningen, The Netherlands.

The properties of gamma-aminobutyric acid (GABA) transport into membrane vesicles derived from synaptosomes of rat brain have been studied using membrane-permeable and -impermeable sulfhydryl reagents, dithiol-specific reagents and oxidizing reagents. GABA transport is inhibited, reversibly, by very low concentrations of the membrane-permeable trivalent arsenical, phenylarsine oxide. Preincubation with this reagent only partially protects GABA transport from inactivation by N-ethylmaleimide (NEM). Thorin, a negatively charged trivalent arsenical, has no influence on GABA transport at concentrations 100-fold higher than that of the inhibitory phenylarsine oxide. The impermeant oxidizing agent, potassium ferricyanide, did not inhibit transport whereas the permeant reagent, diamide, was inhibitory. These data indicate that the GABA transporter possesses an activity-linked dithiol in a hydrophobic region of the carrier not accessible to charged, polar reagents. p-Chloromercuribenzenesulfonate (PCMBS) also inhibits but does not protect against NEM inactivation, suggesting the occurrence of an activity-linked monothiol in a polar region of the carrier.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013438 Sulfhydryl Compounds Compounds containing the -SH radical. Mercaptan,Mercapto Compounds,Sulfhydryl Compound,Thiol,Thiols,Mercaptans,Compound, Sulfhydryl,Compounds, Mercapto,Compounds, Sulfhydryl
D013439 Sulfhydryl Reagents Chemical agents that react with SH groups. This is a chemically diverse group that is used for a variety of purposes. Among these are enzyme inhibition, enzyme reactivation or protection, and labelling. SH-Reagents,Sulfhydryl Compound Antagonists,Sulfhydryl Compound Inhibitors,Thiol Reagents,Sulfhydryl Compounds Antagonists,Sulfhydryl Compounds Inhibitors,Antagonists, Sulfhydryl Compound,Antagonists, Sulfhydryl Compounds,Compound Antagonists, Sulfhydryl,Compound Inhibitors, Sulfhydryl,Inhibitors, Sulfhydryl Compound,Inhibitors, Sulfhydryl Compounds,Reagents, Sulfhydryl,Reagents, Thiol,SH Reagents

Related Publications

G T Robillard, and J M Schaaf, and A W Teelken
September 1981, The Biochemical journal,
G T Robillard, and J M Schaaf, and A W Teelken
February 1983, Journal of neurochemistry,
G T Robillard, and J M Schaaf, and A W Teelken
December 1981, Journal of neurochemistry,
G T Robillard, and J M Schaaf, and A W Teelken
May 1984, Neurochemical research,
G T Robillard, and J M Schaaf, and A W Teelken
February 1981, Journal of neurochemistry,
G T Robillard, and J M Schaaf, and A W Teelken
January 1983, Journal of neural transmission,
G T Robillard, and J M Schaaf, and A W Teelken
January 1981, The Journal of biological chemistry,
G T Robillard, and J M Schaaf, and A W Teelken
June 1984, FEBS letters,
G T Robillard, and J M Schaaf, and A W Teelken
March 2001, Neuroreport,
G T Robillard, and J M Schaaf, and A W Teelken
January 1982, Experimental gerontology,
Copied contents to your clipboard!