Optimizing the technique for eliciting antidromic sural and superficial fibular sensory nerve action potentials. 2023

Antony Winkel, and Mark Cook, and Leslie Roberts
Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, Victoria, Australia.

Lower limb sensory nerve action potentials are an important component of nerve conduction studies. Most testing of the sural and superficial fibular nerves involves antidromic techniques above the ankle, which result in a falsely unobtainable response in 2%-6% of healthy people. Cadaver, surgical, and more recent ultrasound series suggest this may relate to the site of fascia penetration of the nerve, and it is hypothesized that a modified technique may be more likely to produce reliable responses and reduce false-negative errors. This article evaluates a variety of recording distances for both nerves in 100 healthy controls, including varying recording electrode positions and techniques, to provide the optimal electrodiagnostic information in healthy control subjects. Shorter stimulation distances produce higher-amplitude responses but become confounded by increasing stimulation artifact at very short distances, with the best balance found at around 10 cm. In both sural and superficial fibular nerves, amplitude increases by approximately 10%/cm compared with the standard 14 cm distance. The Daube superficial fibular technique produced a higher amplitude than the Izzo Intermediate technique (by 22.46%, p < .001). The calculated upper limit of normal for side-to-side variation in amplitude was around 50% in the sural nerve but over 70% in the superficial fibular nerve. It is proposed that the 10 cm recording distance for both nerves is optimal, with minimal false-negatives and a higher amplitude elicited than with existing techniques.

UI MeSH Term Description Entries
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D010543 Peroneal Nerve The lateral of the two terminal branches of the sciatic nerve. The peroneal (or fibular) nerve provides motor and sensory innervation to parts of the leg and foot. Fibular Nerve,Fibular Nerves,Nerve, Fibular,Nerve, Peroneal,Nerves, Fibular,Nerves, Peroneal,Peroneal Nerves
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000842 Ankle The region of the lower limb between the FOOT and the LEG. Tarsus,Regio tarsalis,Ankles
D013497 Sural Nerve A branch of the tibial nerve which supplies sensory innervation to parts of the lower leg and foot. Nerve, Sural,Nerves, Sural,Sural Nerves

Related Publications

Antony Winkel, and Mark Cook, and Leslie Roberts
January 1998, Electromyography and clinical neurophysiology,
Antony Winkel, and Mark Cook, and Leslie Roberts
October 1971, American journal of physical medicine,
Antony Winkel, and Mark Cook, and Leslie Roberts
September 1978, Brain : a journal of neurology,
Antony Winkel, and Mark Cook, and Leslie Roberts
June 2003, American journal of physical medicine & rehabilitation,
Antony Winkel, and Mark Cook, and Leslie Roberts
March 1971, Electroencephalography and clinical neurophysiology,
Antony Winkel, and Mark Cook, and Leslie Roberts
October 2016, Muscle & nerve,
Antony Winkel, and Mark Cook, and Leslie Roberts
January 1987, Muscle & nerve,
Antony Winkel, and Mark Cook, and Leslie Roberts
May 1969, Journal of applied physiology,
Antony Winkel, and Mark Cook, and Leslie Roberts
March 2002, Electromyography and clinical neurophysiology,
Copied contents to your clipboard!