| D009203 |
Myocardial Infarction |
NECROSIS of the MYOCARDIUM caused by an obstruction of the blood supply to the heart (CORONARY CIRCULATION). |
Cardiovascular Stroke,Heart Attack,Myocardial Infarct,Cardiovascular Strokes,Heart Attacks,Infarct, Myocardial,Infarction, Myocardial,Infarctions, Myocardial,Infarcts, Myocardial,Myocardial Infarctions,Myocardial Infarcts,Stroke, Cardiovascular,Strokes, Cardiovascular |
|
| D003094 |
Collagen |
A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). |
Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen |
|
| D005347 |
Fibroblasts |
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. |
Fibroblast |
|
| D006341 |
Heart Rupture |
Disease-related laceration or tearing of tissues of the heart, including the free-wall MYOCARDIUM; HEART SEPTUM; PAPILLARY MUSCLES; CHORDAE TENDINEAE; and any of the HEART VALVES. Pathological rupture usually results from myocardial infarction (HEART RUPTURE, POST-INFARCTION). |
Cardiac Rupture,Cardiac Free Wall Rupture,Free Wall Rupture, Heart,Ventricular Free Wall Rupture,Cardiac Ruptures,Heart Ruptures |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D014945 |
Wound Healing |
Restoration of integrity to traumatized tissue. |
Healing, Wound,Healings, Wound,Wound Healings |
|
| D016326 |
Extracellular Matrix Proteins |
Macromolecular organic compounds that contain carbon, hydrogen, oxygen, nitrogen, and usually, sulfur. These macromolecules (proteins) form an intricate meshwork in which cells are embedded to construct tissues. Variations in the relative types of macromolecules and their organization determine the type of extracellular matrix, each adapted to the functional requirements of the tissue. The two main classes of macromolecules that form the extracellular matrix are: glycosaminoglycans, usually linked to proteins (proteoglycans), and fibrous proteins (e.g., COLLAGEN; ELASTIN; FIBRONECTINS; and LAMININ). |
Extracellular Matrix Protein,Matrix Protein, Extracellular,Matrix Proteins, Extracellular,Protein, Extracellular Matrix,Proteins, Extracellular Matrix |
|
| D051379 |
Mice |
The common name for the genus Mus. |
Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus |
|
| D060449 |
Wnt Signaling Pathway |
A complex signaling pathway whose name is derived from the DROSOPHILA Wg gene, and the vertebrate INT gene. The signaling pathway is initiated by the binding of WNT PROTEINS to cell surface WNT RECEPTORS which interact with the AXIN SIGNALING COMPLEX and an array of second messengers that influence the actions of BETA CATENIN. |
Wnt Signaling,Wnt Pathway,Wnt Pathway, Canonical,Wnt beta-Catenin Signaling Pathway,Canonical Wnt Pathway,Canonical Wnt Pathways,Pathway, Canonical Wnt,Pathway, Wnt,Pathway, Wnt Signaling,Signaling Pathway, Wnt,Signaling, Wnt,Wnt Signaling Pathways,Wnt Signalings,Wnt beta Catenin Signaling Pathway |
|
| D018345 |
Mice, Knockout |
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. |
Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out |
|