Structure and expression of the human creatine kinase B gene. 1987

E C Mariman, and C A Broers, and C A Claesen, and G I Tesser, and B Wieringa
Department of Human Genetics, University Nijmegen, Radboud Hospital, The Netherlands.

Various cDNAs for creatine kinase type B (CK-B) were isolated from human cDNA libraries using a 26-oligonucleotide guess-mer probe. One of the cDNAs appeared to be almost full-length and contained an open reading frame coding for the 381 amino acid residues of the human CK-B polypeptide. The nucleotide sequences of the translated region as well as the primary protein structure show a high degree of homology with known CK-B and CK-M sequences of other vertebrates. The level of CK-B RNA as a measure of CK-B gene activity was determined in various human tissues and cultured cells. Our results confirm that CK-B is expressed in a tissue-specific manner and give support to the previously proposed relation between CK-B gene activity and cell proliferation. Screening of genomic DNA with various cDNA regions as probes revealed that there is only one CK-B gene per haploid genome. Gene cloning and sequencing indicated that CK-B is coded for by a relatively small gene of 3.2 kb in size, which is partially overlapped by an HTF island (A. P. Bird (1986) Nature (London) 321, 557-558) with an extremely high G + C content at its 5' end.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

E C Mariman, and C A Broers, and C A Claesen, and G I Tesser, and B Wieringa
August 1989, Nucleic acids research,
E C Mariman, and C A Broers, and C A Claesen, and G I Tesser, and B Wieringa
August 2001, Acta crystallographica. Section D, Biological crystallography,
E C Mariman, and C A Broers, and C A Claesen, and G I Tesser, and B Wieringa
November 1988, The Journal of biological chemistry,
E C Mariman, and C A Broers, and C A Claesen, and G I Tesser, and B Wieringa
November 1991, Nucleic acids research,
E C Mariman, and C A Broers, and C A Claesen, and G I Tesser, and B Wieringa
June 1996, Biochemical and biophysical research communications,
E C Mariman, and C A Broers, and C A Claesen, and G I Tesser, and B Wieringa
May 2000, Proteins,
E C Mariman, and C A Broers, and C A Claesen, and G I Tesser, and B Wieringa
October 1996, The Journal of biological chemistry,
E C Mariman, and C A Broers, and C A Claesen, and G I Tesser, and B Wieringa
April 1982, Clinical chemistry,
E C Mariman, and C A Broers, and C A Claesen, and G I Tesser, and B Wieringa
May 1987, The Journal of clinical investigation,
E C Mariman, and C A Broers, and C A Claesen, and G I Tesser, and B Wieringa
October 1997, The Journal of biological chemistry,
Copied contents to your clipboard!