Phenotyping Superagers Using Resting-State fMRI. 2023

L L de Godoy, and A Studart-Neto, and D R de Paula, and N Green, and A Halder, and P Arantes, and K T Chaim, and N C Moraes, and M S Yassuda, and R Nitrini, and M Dresler, and C da Costa Leite, and J Panovska-Griffiths, and A Soddu, and S Bisdas
From the Departments of Radiology and Oncology (L.L.d.G., P.A., K.T.C., C.d.C.L.) laiz.godoy@pennmedicine.upenn.edu.

Superagers are defined as older adults with episodic memory performance similar or superior to that in middle-aged adults. This study aimed to investigate the key differences in discriminative networks and their main nodes between superagers and cognitively average elderly controls. In addition, we sought to explore differences in sensitivity in detecting these functional activities across the networks at 3T and 7T MR imaging fields. Fifty-five subjects 80 years of age or older were screened using a detailed neuropsychological protocol, and 31 participants, comprising 14 superagers and 17 cognitively average elderly controls, were included for analysis. Participants underwent resting-state-fMRI at 3T and 7T MR imaging. A prediction classification algorithm using a penalized regression model on the measurements of the network was used to calculate the probabilities of a healthy older adult being a superager. Additionally, ORs quantified the influence of each node across preselected networks. The key networks that differentiated superagers and elderly controls were the default mode, salience, and language networks. The most discriminative nodes (ORs > 1) in superagers encompassed areas in the precuneus posterior cingulate cortex, prefrontal cortex, temporoparietal junction, temporal pole, extrastriate superior cortex, and insula. The prediction classification model for being a superager showed better performance using the 7T compared with 3T resting-state-fMRI data set. Our findings suggest that the functional connectivity in the default mode, salience, and language networks can provide potential imaging biomarkers for predicting superagers. The 7T field holds promise for the most appropriate study setting to accurately detect the functional connectivity patterns in superagers.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D003071 Cognition Intellectual or mental process whereby an organism obtains knowledge. Cognitive Function,Cognitions,Cognitive Functions,Function, Cognitive,Functions, Cognitive
D006179 Gyrus Cinguli One of the convolutions on the medial surface of the CEREBRAL HEMISPHERES. It surrounds the rostral part of the brain and CORPUS CALLOSUM and forms part of the LIMBIC SYSTEM. Anterior Cingulate Gyrus,Brodmann Area 23,Brodmann Area 24,Brodmann Area 26,Brodmann Area 29,Brodmann Area 30,Brodmann Area 31,Brodmann Area 32,Brodmann Area 33,Brodmann's Area 23,Brodmann's Area 24,Brodmann's Area 26,Brodmann's Area 29,Brodmann's Area 30,Brodmann's Area 31,Brodmann's Area 32,Brodmann's Area 33,Cingulate Gyrus,Gyrus Cinguli Anterior,Retrosplenial Complex,Retrosplenial Cortex,Anterior Cingulate,Anterior Cingulate Cortex,Cingular Gyrus,Cingulate Area,Cingulate Body,Cingulate Cortex,Cingulate Region,Gyrus, Cingulate,Posterior Cingulate,Posterior Cingulate Cortex,Posterior Cingulate Gyri,Posterior Cingulate Gyrus,Posterior Cingulate Region,Superior Mesial Regions,24, Brodmann Area,Anterior Cingulate Cortices,Anterior Cingulates,Anterior, Gyrus Cinguli,Anteriors, Gyrus Cinguli,Area 23, Brodmann,Area 23, Brodmann's,Area 24, Brodmann,Area 24, Brodmann's,Area 26, Brodmann,Area 26, Brodmann's,Area 29, Brodmann,Area 29, Brodmann's,Area 30, Brodmann,Area 30, Brodmann's,Area 31, Brodmann,Area 31, Brodmann's,Area 32, Brodmann,Area 32, Brodmann's,Area 33, Brodmann,Area 33, Brodmann's,Area, Cingulate,Body, Cingulate,Brodmanns Area 23,Brodmanns Area 24,Brodmanns Area 26,Brodmanns Area 29,Brodmanns Area 30,Brodmanns Area 31,Brodmanns Area 32,Brodmanns Area 33,Cingulate Areas,Cingulate Bodies,Cingulate Cortex, Anterior,Cingulate Cortex, Posterior,Cingulate Gyrus, Anterior,Cingulate Gyrus, Posterior,Cingulate Region, Posterior,Cingulate Regions,Cingulate, Anterior,Cingulate, Posterior,Cinguli Anterior, Gyrus,Cinguli Anteriors, Gyrus,Complex, Retrosplenial,Cortex, Anterior Cingulate,Cortex, Cingulate,Cortex, Posterior Cingulate,Cortex, Retrosplenial,Gyrus Cinguli Anteriors,Gyrus, Anterior Cingulate,Gyrus, Cingular,Gyrus, Posterior Cingulate,Posterior Cingulate Cortices,Posterior Cingulate Regions,Posterior Cingulates,Region, Cingulate,Region, Posterior Cingulate,Retrosplenial Complices,Retrosplenial Cortices,Superior Mesial Region
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D013702 Temporal Lobe Lower lateral part of the cerebral hemisphere responsible for auditory, olfactory, and semantic processing. It is located inferior to the lateral fissure and anterior to the OCCIPITAL LOBE. Anterior Temporal Lobe,Brodmann Area 20,Brodmann Area 21,Brodmann Area 22,Brodmann Area 37,Brodmann Area 38,Brodmann Area 52,Brodmann's Area 20,Brodmann's Area 21,Brodmann's Area 22,Brodmann's Area 37,Brodmann's Area 38,Brodmann's Area 52,Inferior Temporal Gyrus,Middle Temporal Gyrus,Parainsular Area,Fusiform Gyrus,Gyrus Fusiformis,Gyrus Temporalis Superior,Inferior Horn of Lateral Ventricle,Inferior Horn of the Lateral Ventricle,Lateral Occipito-Temporal Gyrus,Lateral Occipitotemporal Gyrus,Occipitotemporal Gyrus,Planum Polare,Superior Temporal Gyrus,Temporal Cortex,Temporal Gyrus,Temporal Horn,Temporal Horn of the Lateral Ventricle,Temporal Operculum,Temporal Region,Temporal Sulcus,Anterior Temporal Lobes,Area 20, Brodmann,Area 20, Brodmann's,Area 21, Brodmann,Area 21, Brodmann's,Area 22, Brodmann,Area 22, Brodmann's,Area 37, Brodmann,Area 37, Brodmann's,Area 38, Brodmann,Area 38, Brodmann's,Area 52, Brodmann,Area 52, Brodmann's,Area, Parainsular,Areas, Parainsular,Brodmanns Area 20,Brodmanns Area 21,Brodmanns Area 22,Brodmanns Area 37,Brodmanns Area 38,Brodmanns Area 52,Cortex, Temporal,Gyrus, Fusiform,Gyrus, Inferior Temporal,Gyrus, Lateral Occipito-Temporal,Gyrus, Lateral Occipitotemporal,Gyrus, Middle Temporal,Gyrus, Occipitotemporal,Gyrus, Superior Temporal,Gyrus, Temporal,Horn, Temporal,Lateral Occipito Temporal Gyrus,Lobe, Anterior Temporal,Lobe, Temporal,Occipito-Temporal Gyrus, Lateral,Occipitotemporal Gyrus, Lateral,Operculum, Temporal,Parainsular Areas,Region, Temporal,Sulcus, Temporal,Temporal Cortices,Temporal Gyrus, Inferior,Temporal Gyrus, Middle,Temporal Gyrus, Superior,Temporal Horns,Temporal Lobe, Anterior,Temporal Lobes,Temporal Lobes, Anterior,Temporal Regions
D017397 Prefrontal Cortex The rostral part of the frontal lobe, bounded by the inferior precentral fissure in humans, which receives projection fibers from the MEDIODORSAL NUCLEUS OF THE THALAMUS. The prefrontal cortex receives afferent fibers from numerous structures of the DIENCEPHALON; MESENCEPHALON; and LIMBIC SYSTEM as well as cortical afferents of visual, auditory, and somatic origin. Anterior Prefrontal Cortex,Brodmann Area 10,Brodmann Area 11,Brodmann Area 12,Brodmann Area 47,Brodmann's Area 10,Brodmann's Area 11,Brodmann's Area 12,Brodmann's Area 47,Pars Orbitalis,Frontal Sulcus,Gyrus Frontalis Inferior,Gyrus Frontalis Superior,Gyrus Orbitalis,Gyrus Rectus,Inferior Frontal Gyrus,Lateral Orbitofrontal Cortex,Marginal Gyrus,Medial Frontal Gyrus,Olfactory Sulci,Orbital Area,Orbital Cortex,Orbital Gyri,Orbitofrontal Cortex,Orbitofrontal Gyri,Orbitofrontal Gyrus,Orbitofrontal Region,Rectal Gyrus,Rectus Gyrus,Straight Gyrus,Subcallosal Area,Superior Frontal Convolution,Superior Frontal Gyrus,Ventral Medial Prefrontal Cortex,Ventromedial Prefrontal Cortex,Anterior Prefrontal Cortices,Area 10, Brodmann,Area 10, Brodmann's,Area 11, Brodmann,Area 11, Brodmann's,Area 12, Brodmann,Area 12, Brodmann's,Area 47, Brodmann,Area 47, Brodmann's,Area, Orbital,Area, Subcallosal,Brodmanns Area 10,Brodmanns Area 11,Brodmanns Area 12,Brodmanns Area 47,Convolution, Superior Frontal,Convolutions, Superior Frontal,Cortex, Anterior Prefrontal,Cortex, Lateral Orbitofrontal,Cortex, Orbital,Cortex, Orbitofrontal,Cortex, Prefrontal,Cortex, Ventromedial Prefrontal,Cortices, Ventromedial Prefrontal,Frontal Convolution, Superior,Frontal Gyrus, Inferior,Frontal Gyrus, Medial,Frontal Gyrus, Superior,Frontalis Superior, Gyrus,Gyrus, Inferior Frontal,Gyrus, Marginal,Gyrus, Medial Frontal,Gyrus, Orbital,Gyrus, Orbitofrontal,Gyrus, Rectal,Gyrus, Rectus,Gyrus, Straight,Gyrus, Superior Frontal,Inferior, Gyrus Frontalis,Lateral Orbitofrontal Cortices,Olfactory Sulcus,Orbital Areas,Orbital Cortices,Orbital Gyrus,Orbitalis, Pars,Orbitofrontal Cortex, Lateral,Orbitofrontal Cortices,Orbitofrontal Cortices, Lateral,Orbitofrontal Regions,Prefrontal Cortex, Anterior,Prefrontal Cortex, Ventromedial,Prefrontal Cortices, Anterior,Region, Orbitofrontal,Subcallosal Areas,Sulcus, Frontal,Superior Frontal Convolutions,Superior, Gyrus Frontalis,Ventromedial Prefrontal Cortices

Related Publications

L L de Godoy, and A Studart-Neto, and D R de Paula, and N Green, and A Halder, and P Arantes, and K T Chaim, and N C Moraes, and M S Yassuda, and R Nitrini, and M Dresler, and C da Costa Leite, and J Panovska-Griffiths, and A Soddu, and S Bisdas
January 2014, PloS one,
L L de Godoy, and A Studart-Neto, and D R de Paula, and N Green, and A Halder, and P Arantes, and K T Chaim, and N C Moraes, and M S Yassuda, and R Nitrini, and M Dresler, and C da Costa Leite, and J Panovska-Griffiths, and A Soddu, and S Bisdas
December 2007, Schizophrenia research,
L L de Godoy, and A Studart-Neto, and D R de Paula, and N Green, and A Halder, and P Arantes, and K T Chaim, and N C Moraes, and M S Yassuda, and R Nitrini, and M Dresler, and C da Costa Leite, and J Panovska-Griffiths, and A Soddu, and S Bisdas
April 2018, Current protocols in neuroscience,
L L de Godoy, and A Studart-Neto, and D R de Paula, and N Green, and A Halder, and P Arantes, and K T Chaim, and N C Moraes, and M S Yassuda, and R Nitrini, and M Dresler, and C da Costa Leite, and J Panovska-Griffiths, and A Soddu, and S Bisdas
January 2017, Frontiers in neuroscience,
L L de Godoy, and A Studart-Neto, and D R de Paula, and N Green, and A Halder, and P Arantes, and K T Chaim, and N C Moraes, and M S Yassuda, and R Nitrini, and M Dresler, and C da Costa Leite, and J Panovska-Griffiths, and A Soddu, and S Bisdas
April 2009, NeuroImage,
L L de Godoy, and A Studart-Neto, and D R de Paula, and N Green, and A Halder, and P Arantes, and K T Chaim, and N C Moraes, and M S Yassuda, and R Nitrini, and M Dresler, and C da Costa Leite, and J Panovska-Griffiths, and A Soddu, and S Bisdas
July 2022, Journal of neuroscience methods,
L L de Godoy, and A Studart-Neto, and D R de Paula, and N Green, and A Halder, and P Arantes, and K T Chaim, and N C Moraes, and M S Yassuda, and R Nitrini, and M Dresler, and C da Costa Leite, and J Panovska-Griffiths, and A Soddu, and S Bisdas
November 2015, Brain structure & function,
L L de Godoy, and A Studart-Neto, and D R de Paula, and N Green, and A Halder, and P Arantes, and K T Chaim, and N C Moraes, and M S Yassuda, and R Nitrini, and M Dresler, and C da Costa Leite, and J Panovska-Griffiths, and A Soddu, and S Bisdas
July 2019, Artificial intelligence in medicine,
L L de Godoy, and A Studart-Neto, and D R de Paula, and N Green, and A Halder, and P Arantes, and K T Chaim, and N C Moraes, and M S Yassuda, and R Nitrini, and M Dresler, and C da Costa Leite, and J Panovska-Griffiths, and A Soddu, and S Bisdas
June 2023, NPJ digital medicine,
L L de Godoy, and A Studart-Neto, and D R de Paula, and N Green, and A Halder, and P Arantes, and K T Chaim, and N C Moraes, and M S Yassuda, and R Nitrini, and M Dresler, and C da Costa Leite, and J Panovska-Griffiths, and A Soddu, and S Bisdas
April 2012, Magnetic resonance imaging,
Copied contents to your clipboard!